Along-strike variability of fault-controlled deltaic systems (Crati Basin, southern Italy)

Authors

  • Candela Martínez Clastic Sedimentology Investigation (CSI), Department of Earth Sciences, Royal Holloway University of London, London, TW20 0EX, UK and Department of Analytic Sciences, Universidad Nacional de Educación a Distancia, Madrid, 28015, Spain
  • Christopher A.-L. Jackson Department of Earth Science and Engineering, Imperial College London, London, SW7 2BX, UK https://orcid.org/0000-0002-8592-9032
  • Nicola Scarselli Clastic Sedimentology Investigation (CSI), Department of Earth Sciences, Royal Holloway University of London, London, TW20 0EX, UK https://orcid.org/0000-0002-6477-6866
  • Sergio Longhitano Department of Basic and Applied Sciences, Università della Basilicata, Potenza, 85100, Italy https://orcid.org/0000-0003-4978-4582
  • Francesco Muto Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, 87036, Italy
  • Domenico Chiarella Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy https://orcid.org/0000-0003-2482-0081

DOI:

https://doi.org/10.57035/journals/sdk.2026.e41.1927

Keywords:

Fault-controlled deposits, Deltaic systems, Normal fault systems, Growth, Sedimentology, Stratigraphic architecture

Abstract

Normal fault growth models are largely based on the geometric relationship between fault displacement and length, and the seismically imaged record of accommodation development contained within syn-rift strata. However, it is possible to infer variations in the style of normal fault growth across poorly exposed faulted margins through the analysis of the sedimentology and stratigraphic architecture of the associated syn-rift deposits. Here, we analyze the stratigraphic and along-strike variability of normal-fault controlled deltaic systems to infer the evolution of their related basin-margin fault system, for which the geometry and displacement patterns are poorly constrained. The Crati Basin (southern Italy) contains Pleistocene syn-rift deposits exposed in the hangingwall of a c. 45 km-long normal fault system. We show that during an early extensional phase, shelf-type deltas were deposited along the entire strike length of the fault system, suggestive of relatively shallow water depths and early establishment of fault length. In contrast, a later extensional phase resulted in the deposition of Gilbert-type deltas at the center and towards the northern end of the fault system, whereas shelf-type deltas persisted near the system southern tip; this stratigraphic evolution records the transition to a period when the fault system growth was characterized by displacement accumulation rather than lengthening. We show that the detailed sedimentological and stratigraphic analysis of exposed ancient deltaic systems can be used to discriminate between models for normal fault growth and that, conversely, displacement and accommodation variations along normal faults control the styles and depositional architecture of deltaic systems in extensional settings.

Downloads

Download data is not yet available.

References

Ainsworth, R. B., Vakarelov, B. K., & Nanson, R. A. (2011). Dynamic spatial and temporal prediction of changes in depositional processes on clastic shorelines: Toward improved subsurface uncertainty reduction and management. AAPG Bulletin, 95(2), 267–297. https://doi.org/10.1306/06301010036 DOI: https://doi.org/10.1306/06301010036

Amodio Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V., Piccarreta, G., Russo, M., Scandone, P., Zanettin Lorenzoni, E., & Zuppetta, A. (1976). L’arco Calabro-Peloritano nell’orogene appenninico Maghrebide. Italian Journal of Geosciences, 17, 1–60.

Argnani, A., Brancolini, G., Bonazzi, C., Rovere, M., Accaino, F., Zgur, F., & Lodolo, E. (2009). The results of the Taormina 2006 seismic survey: Possible implications for active tectonics in the Messina Straits. Tectonophysics, 476(1–2), 159–169. https://doi.org/10.1016/j.tecto.2008.10.029 DOI: https://doi.org/10.1016/j.tecto.2008.10.029

Backert, N., Ford, M., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert-type fan delta, Corinth Rift, Greece. Sedimentology, 57(2), 543–586. https://doi.org/10.1111/j.1365-3091.2009.01105.x DOI: https://doi.org/10.1111/j.1365-3091.2009.01105.x

Barrett, B. J., Collier, R. E. Ll., Hodgson, D. M., Gawthorpe, R. L., Dorrell, R. M., & Cullen, T. M. (2019). Quantifying faulting and base level controls on syn-rift sedimentation using stratigraphic architectures of coeval, adjacent Early-Middle Pleistocene fan deltas in Lake Corinth, Greece. Basin Research, 31(6), 1040–1065. https://doi.org/10.1111/bre.12356 DOI: https://doi.org/10.1111/bre.12356

Barrett, B. J., Hodgson, D. M., Collier, R. E. L., & Dorrell, R. M. (2018). Novel 3D sequence stratigraphic numerical model for syn-rift basins: Analysing architectural responses to eustasy, sedimentation and tectonics. Marine and Petroleum Geology, 92, 270–284. https://doi.org/10.1016/j.marpetgeo.2017.10.026 DOI: https://doi.org/10.1016/j.marpetgeo.2017.10.026

Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research, 21(6), 824–855. https://doi.org/10.1111/j.1365-2117.2009.00401.x DOI: https://doi.org/10.1111/j.1365-2117.2009.00401.x

Bonardi, G., Capoa, P. D., Di Staso, A., Perrone, V., Sonnino, M., & Tramontana, M. (2005). The age of the Paludi Formation: A major constraint to the beginning of the Apulia-verging orogenic transport in the northern sector of the Calabria–Peloritani Arc. Terra Nova, 17(4), 331–337. https://doi.org/10.1111/j.1365-3121.2005.00618.x DOI: https://doi.org/10.1111/j.1365-3121.2005.00618.x

Burton, A. N. (1971). Carta Geologica della Calabria alla scala di 1:25.000: Relazione generale. Cassa per il Mezzogiorno, Servizio Bonifiche.

Busquet, J.-C., & Gueremy, P. (1969). Quelques phénomènes de néotectonique dans l’Apennin Calabro-Lucanien et leurs conséquences morphologiques. II. L’escarpment méridional du Pollino et son piémont. Revue De Géographie Physique Et Géologie Dynamique, 11, 223–236.

Butler, R. W. H., Mazzoli, S., Corrado, S., Donatis, M. D., Bucci, D. D., Gambini, R., Naso, G., Nicolai, C., Scrocca, D., Shiner, P., & Zucconi, V. (2004). Applying Thick-skinned Tectonic Models to the Apennine Thrust Belt of Italy—Limitations and Implications. In K. R. McClay (Ed.), Thrust Tectonics and Hydrocarbon Systems: Vol. 82: AAPG Memoir (pp. 647–667). American Association of Petroleum Geologists. https://doi.org/10.1306/M82813C34 DOI: https://doi.org/10.1306/M82813C34

Carobene, L., & Damiani, A. V. (1985). Tettonica e sedimentazione pleistocenica nella media valle del fiume Crati. Area tra il torrente Pescara ed il fiume Mucone (Calabria). Italian Journal of Geosciences, 104(1), 115–127.

Chen, H., Wood, L. J., & Gawthorpe, R. L. (2021). Sediment dispersal and redistributive processes in axial and transverse deep-time source-to-sink systems of marine rift basins: Dampier Sub-basin, Northwest Shelf, Australia. Basin Research, 33(1), 227–249. https://doi.org/10.1111/bre.12462 DOI: https://doi.org/10.1111/bre.12462

Chiarella, D., Capella, W., Longhitano, S. G., & Muto, F. (2021). Fault-controlled base-of-scarp deposits. Basin Research, 33(2), 1056–1075. https://doi.org/10.1111/bre.12505 DOI: https://doi.org/10.1111/bre.12505

Childs, C., Holdsworth, R. E., Jackson, C. A.-L., Manzocchi, T., Walsh, J. J., & Yielding, G. (2017). Introduction to the geometry and growth of normal faults. Geological Society, London, Special Publications, 439(1), 1–9. https://doi.org/10.1144/SP439.24 DOI: https://doi.org/10.1144/SP439.24

Colella, A. (1988). Pliocene-Holocene fan deltas and braid deltas in the Crati Basin, Southern Italy: A consequence of varying tectonc conditions. In W. Nemec & R. J. Steel (Eds.), Fan Deltas: Sedimentology and Tectonic Settings (pp. 50–74). Blackie and Son.

Colella, A., De Boer, P. L., & Nio, S. D. (1987). Sedimentology of a marine intermontane Pleistocene Gilbert-type fan-delta complex in the Crati Basin, Calabria, southern Italy. Sedimentology, 34(4), 721–736. https://doi.org/10.1111/j.1365-3091.1987.tb00798.x DOI: https://doi.org/10.1111/j.1365-3091.1987.tb00798.x

Corradino, M., Pepe, F., Bertotti, G., Picotti, V., Monaco, C., & Nicolich, R. (2020). 3-D Architecture and Plio-Quaternary Evolution of the Paola Basin: Insights Into the Forearc of the Tyrrhenian-Ionian Subduction System. Tectonics, 39(2), e2019TC005898. https://doi.org/10.1029/2019TC005898 DOI: https://doi.org/10.1029/2019TC005898

Dorsey, R. J., Umhoefer, P. J., & Renne, P. R. (1995). Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico. Sedimentary Geology, 98(1–4), 181–204. https://doi.org/10.1016/0037-0738(95)00032-4 DOI: https://doi.org/10.1016/0037-0738(95)00032-4

Dumas, S., & Arnott, R. W. C. (2006). Origin of hummocky and swaley cross-stratification—The controlling influence of unidirectional current strength and aggradation rate. Geology, 34(12), 1073. https://doi.org/10.1130/G22930A.1 DOI: https://doi.org/10.1130/G22930A.1

Ethridge, F. G., & Wescott, W. A. (1984). Tectonic Setting, Recognition and Hydrocarbon Reservoir Potential of Fan Deltas. In Sedimentology of Gravels and Conglomerates: Vol. 10: AAPG Memoir (pp. 217–335). American Association of Petroleum Geologists.

Fabbricatore, D. (2011). Stratigarfia e analisi di facies dei depositi quaternari affioranti in destra della media Valle del Fiume Crati (Calabria Settentrionale) [Doctoral thesis, University of Calabria]. https://hdl.handle.net/20.500.14242/145889

Fabbricatore, D., Robustelli, G., & Muto, F. (2014). Facies analysis and depositional architecture of shelf-type deltas in the Crati Basin (Calabrian Arc, south Italy). Italian Journal of Geosciences, 133(1), 131–148. https://doi.org/10.3301/IJG.2013.19 DOI: https://doi.org/10.3301/IJG.2013.19

Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Research, 25(1), 3–25. https://doi.org/10.1111/j.1365-2117.2012.00550.x DOI: https://doi.org/10.1111/j.1365-2117.2012.00550.x

Galloway, W. E. (1975). Process framework for describing the morphology and stratigraphic evolution of the deltaic depositional systems. In M. L. Broussard (Ed.), Deltas: Models for Exploration (pp. 87–98). Houston Geological Society.

Gawthorpe, R. L., & Colella, A. (1990). Tectonic Controls on Coarse-Grained Delta Depositional Systems in Rift Basins. In A. Colella & D. B. Prior (Eds.), Coarse‐grained deltas: Vol. 10: Special Publication of the International Association of Sedimentologists (1st ed., pp. 113–127). Wiley. https://doi.org/10.1002/9781444303858.ch6 DOI: https://doi.org/10.1002/9781444303858.ch6

Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin-fills. Marine and Petroleum Geology, 11(6), 642–658. https://doi.org/10.1016/0264-8172(94)90021-3 DOI: https://doi.org/10.1016/0264-8172(94)90021-3

Gawthorpe, R. L., Hardy, S., & Ritchie, B. (2003). Numerical modelling of depositional sequences in half-graben rift basins. Sedimentology, 50(1), 169–185. https://doi.org/10.1046/j.1365-3091.2003.00543.x DOI: https://doi.org/10.1046/j.1365-3091.2003.00543.x

Gawthorpe, R. L., Jackson, C. A.-L., Young, M. J., Sharp, I. R., Moustafa, A. R., & Leppard, C. W. (2003). Normal fault growth, displacement localisation and the evolution of normal fault populations: The Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25(6), 883–895. https://doi.org/10.1016/S0191-8141(02)00088-3 DOI: https://doi.org/10.1016/S0191-8141(02)00088-3

Gobo, K., Ghinassi, M., & Nemec, W. (2014). Reciprocal Changes In Foreset To Bottomset Facies In A Gilbert-Type Delta: Response To Short-Term Changes In Base Level. Journal of Sedimentary Research, 84(11), 1079–1095. https://doi.org/10.2110/jsr.2014.83 DOI: https://doi.org/10.2110/jsr.2014.83

Guarnieri, P. (2006). Plio-Quaternary segmentation of the south Tyrrhenian forearc basin. International Journal of Earth Sciences, 95(1), 107–118. https://doi.org/10.1007/s00531-005-0005-2 DOI: https://doi.org/10.1007/s00531-005-0005-2

Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11(2), 167–189. https://doi.org/10.1046/j.1365-2117.1999.00300.x DOI: https://doi.org/10.1046/j.1365-2117.1999.00300.x

Hampson, G. J., & Howell, J. A. (2017). Sedimentologic and sequence-stratigraphic characteristics of wave-dominated deltas. AAPG Bulletin, 101(4), 441–451. https://doi.org/10.1306/011817DIG17023 DOI: https://doi.org/10.1306/011817DIG17023

Hardy, S., & Gawthorpe, R. L. (1998). Effects of variations in fault slip rate on sequence stratigraphy in fan deltas: Insights from numerical modeling. Geology, 26(10), 911–914. https://doi.org/10.1130/0091-7613(1998)026%253C0911:EOVIFS%253E2.3.CO;2 DOI: https://doi.org/10.1130/0091-7613(1998)026<0911:EOVIFS>2.3.CO;2

Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits – Classification, origin and significance. Marine and Petroleum Geology, 26(10), 1900–1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012 DOI: https://doi.org/10.1016/j.marpetgeo.2009.02.012

Henstra, G. A., Grundvåg, S.-A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., Rotevatn, A., Surlyk, F., Sæther, T., & Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018 DOI: https://doi.org/10.1016/j.marpetgeo.2016.05.018

Jackson, C. A.-L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. M. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geological Society, London, Special Publications, 439(1), 187–217. https://doi.org/10.1144/SP439.22 DOI: https://doi.org/10.1144/SP439.22

Jackson, C. A.-L., Gawthorpe, R. L., & Sharp, I. R. (2002). Growth and linkage of the East Tanka fault zone, Suez rift: Structural style and syn-rift stratigraphic response. Journal of the Geological Society, 159(2), 175–187. https://doi.org/10.1144/0016-764901-100 DOI: https://doi.org/10.1144/0016-764901-100

Lanzafame, G., & Tortorici, L. (1981). La tettonica recente del Fiume Crati (Calabria). Geografia Fisica E Dinamica Quaternaria, 4, 11–21. https://www.gfdq.glaciologia.it/index.php/GFDQ/article/view/996

Lanzafame, G., & Zuffa, G. G. (1976). Geologia e petrografia del Foglio di Bisignano (Bacino del Crati, Calabria): Carta geologica alla scala 1:50000. Geologica Romana, 15, 223–270.

Longhitano, S. G. (2008). Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (Southern Apennines, Italy). Sedimentary Geology, 210(3–4), 87–110. https://doi.org/10.1016/j.sedgeo.2008.07.004 DOI: https://doi.org/10.1016/j.sedgeo.2008.07.004

Magni, V., Faccenna, C., Hunen, J., & Funiciello, F. (2014). How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models. Geology, 42(6), 511–514. https://doi.org/10.1130/G35446.1 DOI: https://doi.org/10.1130/G35446.1

Martínez, C., Chiarella, D., Jackson, C. A.-L., Rennie, H., & Scarselli, N. (2024). Syn-rift tectono-stratigraphic development of the Thebe-0 fault system, Exmouth Plateau, offshore NW Australia: The role of fault-scarp degradation. Basin Research, 36(1), e12842. https://doi.org/10.1111/bre.12842 DOI: https://doi.org/10.1111/bre.12842

Martínez, C., Chiarella, D., Jackson, C. A.-L., & Scarselli, N. (2025). Large-scale variability in style and magnitude of footwall rift-related unconformities, northern Carnarvon Basin, offshore NW Australia. Journal of the Geological Society, 182(1), jgs2024-67. https://doi.org/10.1144/jgs2024-067 DOI: https://doi.org/10.1144/jgs2024-067

Massari, F., & Colella, A. (1988). Evolution and types of fan-delta systems in some major tectonic settings. In W. Nemec & R. J. Steel (Eds.), Fan Deltas: Sedimentology and Tectonic Settings (pp. 103–122). Blackie and Son.

Monaco, C., & Tortorici, L. (2000). Active faulting in the Calabrian arc and eastern Sicily. Journal of Geodynamics, 29(3–5), 407–424. https://doi.org/10.1016/S0264-3707(99)00052-6 DOI: https://doi.org/10.1016/S0264-3707(99)00052-6

Nemec, W. (1990). Aspects of Sediment Movement on Steep Delta Slopes. In A. Colella & D. B. Prior (Eds.), Coarse‐Grained Deltas: Vol. 10: Special Publication of the International Association of Sedimentologists (1st ed., pp. 29–73). Wiley. https://doi.org/10.1002/9781444303858.ch3 DOI: https://doi.org/10.1002/9781444303858.ch3

Nemec, W., & Steel, R. J. (Eds.). (1988). Fan deltas: Sedimentology and tectonic settings (1st ed.). Blackie and Son Ltd.

Patacca, E., Sartori, R., & Scandone, P. (1990). Tyrrhenian basin and Apenninic arcs: Kinematic relations since the late Tortonian times. Italian Journal of Geosciences, 45, 425–451.

Prior, D. B., & Bornhold, B. D. (1988). Submarine morphology and processes of fjord fan deltas and related high-gradient systems: Modern examples from British Columbia. In W. Nemec & R. J. Steel (Eds.), Fan Deltas: Sedimentology and Tectonic Settings (pp. 103–122). Blackie and Son.

Quye-Sawyer, J., Whittaker, A. C., Roberts, G. G., & Rood, D. H. (2021). Fault Throw and Regional Uplift Histories From Drainage Analysis: Evolution of Southern Italy. Tectonics, 40(4), e2020TC006076. https://doi.org/10.1029/2020TC006076 DOI: https://doi.org/10.1029/2020TC006076

Rasmussen, H. (2000). Nearshore and alluvial facies in the Sant Llorenç del Munt depositional system: Recognition and development. Sedimentary Geology, 138(1–4), 71–98. https://doi.org/10.1016/S0037-0738(00)00144-5 DOI: https://doi.org/10.1016/S0037-0738(00)00144-5

Robustelli, G., & Muto, F. (2017). The Crati River Basin: Geomorphological and stratigraphical data for the Plio–Quaternary evolution of northern Calabria, South Apennines, Italy. Geologica Carpathica, 68(1), 68–79. https://doi.org/10.1515/geoca-2017-0006 DOI: https://doi.org/10.1515/geoca-2017-0006

Scandone, P. (1979). Origin of the Tyrrhenian Sea and Calabrian Arc. Italian Journal of Geosciences, 98(1), 27–34.

Spina, V., Tondi, E., Galli, P., & Mazzoli, S. (2009). Fault propagation in a seismic gap area (northern Calabria, Italy): Implications for seismic hazard. Tectonophysics, 476(1–2), 357–369. https://doi.org/10.1016/j.tecto.2009.02.001 DOI: https://doi.org/10.1016/j.tecto.2009.02.001

Spina, V., Tondi, E., & Mazzoli, S. (2011). Complex basin development in a wrench-dominated back-arc area: Tectonic evolution of the Crati Basin, Calabria, Italy. Journal of Geodynamics, 51(2–3), 90–109. https://doi.org/10.1016/j.jog.2010.05.003 DOI: https://doi.org/10.1016/j.jog.2010.05.003

Surlyk, F. (1978). Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic-Cretaceous boundary, East Greenland). Bulletin Grønlands Geologiske Undersøgelse, 128, 1–108. https://doi.org/10.34194/bullggu.v128.6670 DOI: https://doi.org/10.34194/bullggu.v128.6670

Swift, D. J. P., & Thorne, J. A. (1992). Sedimentation on Continental Margins, I: A General Model for Shelf Sedimentation. In D. J. P. Swift, G. F. Oertel, R. W. Tillman, & J. A. Thorne (Eds.), Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy: Vol. 14: Special Publication of the International Association of Sedimentologists (1st ed., pp. 1–31). Wiley. https://doi.org/10.1002/9781444303933.ch1 DOI: https://doi.org/10.1002/9781444303933.ch1

Tansi, C., Muto, F., Critelli, S., & Iovine, G. (2007). Neogene-Quaternary strike-slip tectonics in the central Calabrian Arc (southern Italy). Journal of Geodynamics, 43(3), 393–414. https://doi.org/10.1016/j.jog.2006.10.006 DOI: https://doi.org/10.1016/j.jog.2006.10.006

Turco, E., Maresca, R., & Cappadona, P. (1990). La tettonica plio-pleistocenica del confine calabro-lucano. Italian Journal of Geosciences, 45(1), 519–529.

Wortel, M. J. R., & Spakman, W. (1993). The dynamic evolution of the Apenninic-Calabrian, Hellenic and Carpathian arcs: A unifying approach. Terra Nova Abstract Supplement, 5(1), 97.

Young, M. J., & Colella, A. (1988). Calcareous nannofossils from the Crati Basin. In A. Colella (Ed.), Fan deltas-excursion guide-book (pp. 79–96). Università della Calabria.

Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2002). Architecture and evolution of syn-rift clastic depositional systems towards the tip of a major fault segment, Suez Rift, Egypt. Basin Research, 14(1), 1–23. https://doi.org/10.1046/j.1365-2117.2002.00162.x DOI: https://doi.org/10.1046/j.1365-2117.2002.00162.x

Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2003). Normal fault growth and early syn-rift sedimentology and sequence stratigraphy: Thal Fault, Suez Rift, Egypt. Basin Research, 15(4), 479–502. https://doi.org/10.1046/j.1365-2117.2003.00216.x DOI: https://doi.org/10.1046/j.1365-2117.2003.00216.x

Conceptual diagrams of fault-controlled delta evolution along the eastern margin of the Crati Basin.

Downloads

Additional Files

Published

2026-01-18

Section

Publications

Categories

How to Cite

Martínez, C., Jackson, C. A.-L., Scarselli, N., Longhitano, S., Muto, F., & Chiarella, D. (2026). Along-strike variability of fault-controlled deltaic systems (Crati Basin, southern Italy). Sedimentologika, 4(1). https://doi.org/10.57035/journals/sdk.2026.e41.1927