Current concepts in mudstone description and deposition: A synthesis for mudstone initiates

Authors

  • Sara K. Biddle Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton Alberta, T6G 2E3 https://orcid.org/0000-0002-4383-5871
  • Maya T. LaGrange Department of Earth and Planetary Sciences, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 https://orcid.org/0000-0002-9776-7413
  • Brette S. Harris Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton Alberta, T6G 2E3 https://orcid.org/0000-0002-9822-1973
  • Sven Egenhoff Geology and Geological Engineering, University of North Dakota, Leonard Hall Room 101, 81 Cornell St, Grand Forks, ND 58202-8358 https://orcid.org/0000-0002-3072-286X
  • Murray K. Gingras Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton Alberta, T6G 2E3 https://orcid.org/0000-0002-6683-1750

DOI:

https://doi.org/10.57035/journals/sdk.2025.e31.1621

Keywords:

mudstone, black shale, mudstone classification, meiofauna bioturbation, organic matter enrichment

Abstract

Conventionally, geologists have regarded mudstones as deposits formed through suspension settling in environments located at the terminus of sediment transport pathways, with the sediment sourced from a mix of detrital inputs into the basin and in situ production within the basin. However, mudstones are sedimentologically enigmatic as they are characterized by intricate small-scale features. Analysing mudstones with the typical techniques used for coarse grained siliciclastics does a disservice to the intricacies of these deposits. Grains, pores, and depositional fabrics within these rocks are not visible in hand sample, and often not even at the petrographic scale. Study of these features, at appropriate scales, can generate valuable insights into the physical and chemical conditions of their deposition. Along with analytical techniques, the conventionally held interpretations of these rocks are out of date. New insights into the origins and composition of grain components reveal significant variability, indicating these deposits are much more complex than traditionally understood. As a result, historical nomenclature and interpretation paradigms have undergone significant revision. However, there is still more research needed to fully address the challenges of mudstone description, classification and interpretation.

This paper presents digestible discussions of changes in mudstone paradigms, the most effective practices consistent with modern understandings of mudstones, and considers areas that merit further consideration. Ideas presented herein are aimed at all those interested in mudstones, but is primarily meant for those new to the challenge of conducting mudstone analyses.

Herein we recognize several preferred practices that have gained consensus in the literature, these include: (1) clearly defining common historical terms such as ‘clay’, ‘silt’, ‘bed’, and ‘shale’ depending on modern chosen usage; (2) outlining the transportational (i.e., functional) grain size of the deposit, as many constituents may be transported as amalgamated clasts; (3) clearly defining if reported mudstone composition is based on transported or apparent grain size (i.e., individual grain measurements); (4) thin section preparation methods and their integration with other complementary analytical techniques. As well, we discuss: (1) the use of both petrographic trace fossil analysis and microfacies analysis; (2) complex depositional mechanisms, beyond suspension settling, that lead to the accumulation of fine-grained deposits; and, (3) the interaction of several variables involved in accumulating organic-rich deposits. Ultimately, when embarking on mudstone analysis, one must first decide what question they are trying to answer. This will dictate the approach used, and if the focus is on the intricacies of grain size, composition, or depositional fabric.

Downloads

Download data is not yet available.

References

Abbott, S.T. (2000). Detached mud prism origin of highstand systems tracts from mid Pleistocene sequences, Wanganui Basin, New Zealand. Sedimentology, 47(1), 15–29. https://doi.org/10.1046/j.1365-3091.2000.00275.x

Alldredge, A.L. & Silver, M.W. (1988). Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20(1), 41–82. https://doi.org/10.1016/0079-6611(88)90053-5

Alldredge, A.L. & Jackson, G.A. (1995). Aggregation in marine systems. Deep-Sea Research Part II 42, 1–273. https://doi.org/10.1016/0967-0645(95)90003-9

Aller, R.C. (1982). The effects of macrobenthos on chemical properties of marine sediment and overlying water. In P.L. McCall, M.J.S. Tevesz (Eds.), Animal-Sediment Relations. Topics in Geobiology, 100 (pp. 53–102). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1317-6_2

Aller, R.C. (1994). Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114, 331–345. https://doi.org/10.1016/0009-2541(94)90062-0

Aller, R.C. (2001). Transport and reactions in the bioirrigated zone. In B. Boudreau & B.B. Jørgensen, (Eds.), The Benthic Boundary Layer: Transport Processes and Bio- geochemistry (p. 269-301). Oxford Press.

Aller, R.C. & Aller, J.Y. (1998). The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research 56, 905–936. https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=3295&context=journal_of_marine_research

Aller, R.C. & Blair, N.E. (2006). Carbon remineralization in the Amazon–Guianas mobile mudbelt: a sedimentary incinerator. Continental Shelf Research, 26, 2241–2259. https://doi.org/10.1016/j.csr.2006.07.016

Al-Mufti, O.N. (2022). Discussion: “On the origin and significance of composite particles in mudstones: Examples from the Cenomanian Dunvegan Formation” by Li et al. (2021), Sedimentology, 68, 737–754. Sedimentology, 69(6), 2676-2681. https://doi.org/10.1111/sed.13001

Al-Mufti, O.N., Arnott, R.W. C., Hinton, M. J., Alpay, S., & Russell, H. A. (2024). Meiofaunal Bioturbation of Late PLEISTOCENE–HOLOCENE Glaciomarine Mud in the Champlain Sea Basin, Eastern Canada: Origin of Burrows, Their Geochemical Implications, and Paleoenvironmental Controls. Palaios, 39(6), 194-209. https://doi.org/10.2110/palo.2023.040

Aplin, A. C., Fleet, A. J., & Macquaker, J. H. (1999). Muds and mudstones: Physical and fluid-flow properties. Geological Society, London, Special Publications, 158(1), 1-8.

Aplin, A.C. & Macquaker, J.H.S. (2011). Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 95(12), 2031–2059. https://doi.org/10.1306/03281110162

Ardakani, O.H., Biggat, K. & Dewing, K.E. (2022). Rare earth element (REE) content of shale, coal and coal byproducts, and potential for Canadian REE supply – a literature review and initial assessment. Geological Survey of Canada Open File Report 8914, 61 p. https://doi.org/10.4095/330549

Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D. & Regnier, P. (2013). Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Reviews, 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008

Arnosti, C. (2011). Microbial extracellular enzymes and the marine carbon cycle. Annual review of marine science, 3(1), 401-425. https://doi.org/10.1146/annurev-marine-120709-142731

Aubineau, J., El Albani, A., Chi Fru, E., Gingras, M.K., Batonneau, Y., Buatois, L.A., Geffroy, C., Labanowski, J., Laforest, C., Lemée, L., Mángano, M.G., Meunier, A., Pierson-Wickmann, A.C., Recourt, P., Riboulleau, A., Trentesaux, A. & Konhauser, K.O. (2018). Unusual microbial mat-related structural diversity 2.1 billion years ago and implications for the Francevillian biota. Geobiology, 16(5), 476–497. https://doi.org/10.1111/gbi.12296

Baas, J.H., Best, J.L., Peakall, J. & Wang, M. (2009). A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79(4), 162–183. https://doi.org/10.2110/jsr.2009.025

Baucon, A., Corradini, C., Floris, M., Briguglio, A., Cabella, R., Campomenosi, N., Piazza, M. & Corriga, M.G. (2020). Life in near-anoxic conditions: A case study of the ichnology and infaunal ecology of Silurian graptolitic black shales from Sardinia, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109889. https://doi.org/10.1016/J.PALAEO.2020.109889

Bennett, R.H., Bryant, W.R. & Keller, G.H. (1981). Clay fabric of selected submarine sediments; fundamental properties and models. Journal of Sedimentary Research, 51(1), 217–232. https://doi.org/10.1306/212F7C52-2B24-11D7-8648000102C1865D

Bern, C.R., Birdwell, J.E. & Jubb, A.M. (2021). Water-rock interaction and the concentrations of major, trace, and rare earth elements in hydrocarbon-associated produced waters of the United States. Environmental Science: Processes and Impacts, 23(8), 1198-1219. https://doi.org/10.1039/D1EM00080B

Berna, Y.P. (2019). The REE characteristics of oil shales in the Lower Eocene Celtek Formation (Yozgat, Turkey) and their relation to tectonic Provenance. Acta Geologica Sinica (English Edition), 93, 604-621. https://doi.org/10.1111/1755-6724.13818

Berner, R.A. (1978). Sulfate reduction and the rate of deposition of marine sediments. Earth and Planetary Science Letters, 37, 492–498. https://doi.org/10.1016/0012-821X(78)90065-1

Berner, R.A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426, 323–326. https://doi.org/10.1038/nature02131

Betts, J.N. & Holland, H.D. (1991). The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Palaeogeography, Palaeoclimatology, Palaeoecology, 97(1–2), 5–18. https://doi.org/10.1016/0031-0182(91)90178-T

Bhattacharya, J.P. & MacEachern, J.A. (2009). Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research, 79(4), 184–209. https://doi.org/10.2110/jsr.2009.026

Biddle, S. (2020). A Fine Detail Physicochemical Depositional Model for Devonian Organic-Rich Mudstones: A Petrographic Study of the Hare Indian and Canol Formations, Central Mackenzie Valley, Northwest Territories [MSc. thesis, University of Alberta]. https://doi.org/10.7939/R3-JACJ-JP38

Biddle, S.K., LaGrange, M.T., Harris, B.S., Fiess, K., Terlaky, V. & Gingras, M.K. (2021). A fine detail physico-chemical depositional model for Devonian organic-rich mudstones: A petrographic study of the Hare Indian and Canol Formations, Central Mackenzie Valley, Northwest Territories. Sedimentary Geology, 414, 105838. https://doi.org/10.1016/j.sedgeo.2020.105838

Birdwell, J.E. (2012). Review of rare earth elements concentrations in oil shales of the Eocene Green River Formation. U.S. Geological Survey Open-File Report 2012-1016, 20 p. https://doi.org/10.3133/ofr20121016

Boggs, S. (2006). Principles of Sedimentology and Stratigraphy, Fourth edition. Pearson Prentice Hall, Upper Saddle River, NJ, Columbus, pp. 661.

Bohacs, K.M. (1998). Contrasting expressions of depositional sequences in mudrocks from marine to nonmarine environs. In J. Schieber, W. Zimmerle & P.S. Sethi (Eds.), Shales and Mudstones Volume I: Basin Studies, Sedimentology, and Paleontology (p. 33-78). E Schweizerbart’sche Verlagsbuchhandlung.

Bohacs, K.M., Grabowski, G.J., Carroll, A.R., Mankiewicz, P.J., Miskell-Gerhard, K., Schwalbach, J.R., Wegner, M.B. & Simo, J.A. (2005). Production, Destruction, and Dilution—The Many Paths to Source-Rock Development. In N.B. Harris (Ed.), Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences (Vol. 82, p 61-101). Society for Sedimentary Geology Special Publication. https://doi.org/10.2110/pec.05.82.0061

Borcovsky, D., Egenhoff, S., Fishman, N.S., Maletz, J., Boehlke, A. & Lowers, H. (2017). Sedimentology, facies architecture, and sequence stratigraphy of a Mississippian black mudstone succession - the upper member of the Bakken Formation, North Dakota, United States. AAPG Bulletin, 101(10), 1625–1673. https://doi.org/10.1306/01111715183

Bralower, T.J. & Thierstein, H.R. (1987). Organic carbon and metal accumulation rates in Holocene and mid-Cretaceous sediments: palaeoceanographic significance. Marine Petroleum Source Rocks, (26), 345–369. https://doi.org/10.1144/GSL.SP.1987.026.01.23

Brown, J.S. (1943). Suggested use of the word microfacies. Economic Geology, 38(4), 325. https://doi.org/10.2113/gsecongeo.38.4.325

Burdgie, D.J. (2007). The preservation of organic matter in marine sediments: controls, mechanisms and an imbalance in sediment organic carbon budgets? Chemical Reviews, 107, 467-485. https://doi.org/10.1021/cr050347q

Calvert, S.E. & Pedersen, T.F. (1992). Organic carbon accumulation and preservation in marine sediments: how important is anoxia? In J.K. Whelan & J. W. Farrington (Eds), Organic Matter: Productivity, Accumulation and Preservation in Recent and Ancient Sediments (p. 231-263). Columbia Univ. Press, New York.

Campbell, C.V. (1967). Lamina, laminaset, bed and bedset. Sedimentology, 8(1), 7–26. https://doi.org/10.1111/J.1365-3091.1967.TB01301.X

Canfield, D.E. (1989). Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep Sea Research Part A. Oceanographic Research Papers, 36(1), 121-138. https://doi.org/10.1016/0198-0149(89)90022-8

Canfield, D.E. (1994). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114, 315-329. https://doi.org/10.1016/0009-2541(94)90061-2

Canfield, D. E., & Kraft, B. (2022). The ‘oxygen’ in oxygen minimum zones. Environmental Microbiology, 24(11), 5332-5344. https://doi.org/10.1111/1462-2920.16192

Capone, D.G., & Hutchins, D.A. (2013). Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience 6(9): 711-717. https://doi.org/10.1038/ngeo1916

Claypool, G.E. & Kaplan, I.R. (1974). The origin and distribution of methane in marine sediments. In I.R. Kaplan (Ed.), Natural Gases in Marine Sediments (p. 99-139). Plenum. https://doi.org/10.1007/978-1-4684-2757-8_8

Colberg, P.J. (1988). Anaerobic microbial degradation of cellulose, lignin, oliolignols, and monoaromatic lignin derivatives. In A.J.B. Zehnder (Ed.), Biology of Anaerobic Organisms (p. 333-372). Wiley, New York, N.Y.

Coleman, M.L. (1985). Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 315(1531), 39-56. https://doi.org/10.1098/rsta.1985.0028

Coleman, M.L., D.C. Curtis, and Irwin, H. (1979). Burial rate a key to source and reservoir potential. World Oil, March, 83-92.

Cowie, G.L., Hedges, J.I., & Calvert, S.E. (1992). Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment. Geochimica et Cosmochimica Acta, 56(5), 1963-1978. https://doi.org/10.1016/0016-7037(92)90323-B

Cuomo, M.C. & Rhoads, D.C. (1987). Biogenic sedimentary fabrics associated with pioneering polychaete assemblages; modern and ancient. Journal of Sedimentary Research, 57(3), 537–543. https://doi.org/10.1306/212F8B89-2B24-11D7-8648000102C1865D

Cuomo, M.C. & Bartholomew, P.R. (1991). Pelletal Black Shale Fabrics: Their Origin and Significance. In R.V. Tyson & T.H. Pearson (Eds.), Modern and Ancient Continental Shelf Anoxia (Vol. 58, p. 221-232). Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1991.058.01.15

Dauwe, B., Middelburg, J.J., Herman, P.M.J. & Heip, C.H.R. (1999). Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology and Oceanography, 44, 1809-1814. https://doi.org/10.4319/lo.1999.44.7.1809

Dauwe, B., Middelburg, J.J., & Herman, P.M. (2001). Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Marine Ecology Progress Series, 215, 13-22. https://doi.org/10.3354/meps215013

Dawson, W.C. (2000). Shale microfacies: Eagle Ford Group (Cenomanian-Turonian) North-Central Texas Outcrops and Subsurface Equivalents. Gulf Coast Association of Geological Societies Transactions, 50, 607–621.

de Leeuw, J.W. & Largeau, C. (1993). A Review of Macromolecular Organic Compounds That Comprise Living Organisms and Their Role in Kerogen, Coal and Petroleum Formation. In M.H. Engel & S.A. Macko (Eds.), Organic Geochemistry, Principles and Applications (p. 23-72). Plenum Press, New York. https://doi.org/10.1007/978-1-4615-2890-6_2

Demaison, G.J. & Moore, G.T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64, 1179-1209. https://doi.org/10.1016/0146-6380(80)90017-0

DeReuil, A.A. & Birgenheier, L.P. (2019). Sediment dispersal and organic carbon preservation in a dynamic mudstone-dominated system, Juana Lopez Member, Mancos Shale. Sedimentology, 66, 1002-1041. https://doi.org/10.1111/sed.12532

Dorgan, K.M. (2015). The biomechanics of burrowing and boring. Journal of Experimental Biology, 218(2), 176–183. https://doi.org/10.1242/JEB.086983

Dorgan, K.M., Jumars, P.A., Johnson, B., Boudreau, B.P., & Landis, E. (2005). Burrow extension by crack propagation. Nature, 433(7025), 475–475. https://doi.org/10.1038/433475A

Dorgan, K.M., Jumars, P.A., Johnson, B.D. & Boudreau, B.P. (2006). Macrofaunal burrowing: the medium is the message. Oceanography and Marine Biology: An Annual Review, 44, 85-121.

Dorgan, K.M., Arwade, S.R., & Jumars, P.A. (2007). Burrowing in marine muds by crack propagation: kinematics and forces. Journal of Experimental Biology, 210(23), 4198–4212. https://doi.org/10.1242/JEB.010371

Dorgan, K.M., Law, C.J., & Rouse, G.W. (2013). Meandering worms: mechanics of undulatory burrowing in muds. Proceedings of the Royal Society of London, 280, 20122948. https://doi.org/10.1098/rspb.2012.2948

Dorgan, K.M., D’Amelio, C., & Lindsay, S.M. (2016). Strategies of burrowing in soft muddy sediments by diverse polychaetes. Invertebrate Biology, 135(4), 287–301. https://doi.org/10.1111/IVB.12131

Douglas, R.G. (1981). Paleoecology of continental margin basins: a modern case history from the Borderland of Southern California. In R.G. Douglas, I.P. Colburn, & D.S. Gorsline (Eds.) Depositional Systems of Active Continental Margin Basins. Short Course Notes, Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angels, 121-156.

Dowey, P.J. & Taylor, K.G. (2017). Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356, 15–25. https://doi.org/10.1016/j.sedgeo.2017.05.001

Droser, M.L. & Bottjer, D.J. (1986). A Semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56, 558-559.

Dunham, R.J. (1962). Classification of carbonate rocks according to depositional textures. AAPG Memoir 38, 108–121.

Egenhoff, S.O. & Fishman, N.S. (2013). Traces in the dark-sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A. Journal of Sedimentary Research, 83(9), 803–824. https://doi.org/10.2110/jsr.2013.60

Emerson, S. (1985). Organic carbon preservation in marine sediments. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. In E.T Sundquist & W.S. Broecker (Eds.), Geophys. Monogr. Ser (Vol. 32, p. 78-87). AGU, Washington D.C. https://doi.org/10.1029/GM032p0078

Fenchel, T.M. (1978). The ecology of micro-and meiobenthos. Annual Review of Ecology and Systematics, 9(1), 99–121. https://doi.org/10.1146/ANNUREV.ES.09.110178.000531

Fishman, N.S., Hackley, P.C., Lowers, H.A., Hill, R.J., Egenhoff, S.O., Eberl, D.D. & Blum, A.E. (2012). The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom. International Journal of Coal Geology, 103, 32–50. https://doi.org/10.1016/j.coal.2012.07.012

Flügel, E. (2004). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03796-2

Folk, R. (1980). Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin.

Forbes, T.L. (1984). Aspects of the Feeding Biology of Capitella capitata sp I: Measurements of Ingestion Selectivity, Egestion Rate & Absorption Efficiency [MSc thesis, SUNY at Stony Brook, Stony Brook, New York].

Francois, R., Honjo, S., Krishfield, R. & Manganini, S. (2002). Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles 16 (4), 1087. http://dx.doi.org/10.1029/2001GB001722.

Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V. (1979). Early oxidation of organic-matter in pelagic sediments of the eastern equatorial Atlantic-suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090. https://doi.org/10.1016/0016-7037(79)90095-4

Ghadeer, S.G. & Macquaker, J.H.S. (2012). The role of event beds in the preservation of organic carbon in fine-grained sediments: Analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England. Marine and Petroleum Geology, 35(1), 309–320. https://doi.org/10.1016/j.marpetgeo.2012.01.001

Giere, O. (1993). Meiobenthology: The Microscopic Fauna in Aquatic Sediments (526 pp.). Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1017/CBO9781107415324.004

Giere, O. (2009). Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments. Second ed (526 pp.). Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68661-3

Gosh, S., Mukhopadhyay, J. & Chakraborty, A. (2019). Clay mineral and geochemical proxies for intense climate change in the Permian Gondwana rock record from eastern India. Research, 2019, 8974075. https://doi.org/10.34133/2019/8974075

Grego, M., Riedel, B., Stachowitsch, M. & De Troch, M. (2014). Meiofauna winners and losers of coastal hypoxia: case study harpacticoid copepods. Biogeosciences, 11(2), 281–292. https://doi.org/10.5194/bg-11-281-2014

Guenet, B., Danger, M., Abbadie, L. & Lacroix, G. (2010). Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861. https://doi.org/10.1890/09-1968.1

Harris, B.S. (2020). Chemostratigraphy and Facies Analysis of the Hare Indian Formation in the Mackenzie Mountains and Central Mackenzie Valley, Northwest Territories, Canada [MSc. thesis, University of Alberta]. https://doi.org/10.7939/r3-2t6z-n494

Hattin, D.E. (1975). Petrology and origin of fecal pellets in Upper Cretaceous strata of Kansas and Saskatchewan. Journal of Sedimentary Research, 45(3), 686–696. https://doi.org/10.1306/212F6E10-2B24-11D7-8648000102C1865D

Han, C., Jiang, Z., Han, M., Wu, M., & Lin, W. (2016). The lithofacies and reservoir characteristics of the Upper Ordovician and Lower Silurian black shale in the Southern Sichuan Basin and its periphery, China. Marine and Petroleum Geology, 75, 181-191. https://doi.org/10.1016/j.marpetgeo.2016.04.014

Heath, G.R., Moore, T,C., Jr. & Dauphin, J.P. (1977). Organic carbon in deep-sea sediments. In N.R. Andersen and A. Malahoff (Eds.), The Fate of Fossil Fuel CO2 in the Oceans (p. 615-625). Plenum, New York.

Hedges, J.I., Clark, W.A. & Cowie, G.L. (1988). Fluxes and reactivities of organic matter in a coastal marine bay. Limnology and Oceanography, 33, 1137-1152. https://doi.org/10.4319/lo.1988.33.5.1137

Hedges, J.I. & Keil, R.G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81-115. https://doi.org/10.1016/0304-4203(95)00008-F

Henrichs, S.M. (2005). Organic Matter in Coastal Marine Sediments. In A.R. Robinson & K.H. Brink (Eds.), The Global Coastal Ocean: Multiscale Interdisciplinary Processes. The Sea (Vol. 13, p. 129-162). Harvard University Press, Boston.

Henrichs, S.M. & Reeburgh, W.S. (1987). Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology, 5, 191–238. https://doi.org/10.1080/01490458709385971

Hesselbo, S.P., Macquaker, J.H.S. & Taylor, K.G. (1997). Discussion on a sequence-stratigraphic interpretation of a mudstone-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, UK. Journal of the Geological Society, 154(5), 913–916. https://doi.org/10.1144/gsjgs.154.5.0913

Honjo, S., Doherty, K.W., Agrawal, Y.C. & Asper, V.L. (1984). Direct optical assessment of large amorphous aggregates (marine snow) in the deep ocean. Deep Sea Research Part A. Oceanographic Research Papers, 31(1), 67–76. https://doi.org/10.1016/0198-0149(84)90073-6

Huguet, C.E.J., De Lange, G.J., Gustafsson, O., Middelburg, J.J., Sinninghe-Damsté, J.S. & Schouten, S. (2008). Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72, 6061–6068. https://doi.org/10.1016/j.gca.2008.09.021

Hülse, D., Vervoort, P., van de Velde, S.J., Kanzaki, Y., Boudreau, B., Arndt, S., Bottjer, D.J., Hoogakker, B., Kuderer, M., Middelburg, J.J. & Volkenborn, N. (2022). Assessing the impact of bioturbation on sedimentary isotopic records through numerical models. Earth-Science Reviews, 234, 104213. https://doi.org/10.1016/j.earscirev.2022.104213

Ibach, L.E.J. (1982). Relationship between sedimentation rate and total organic carbon content in ancient marine sediments. American Association of Petroleum Geologists Bulletin, 66(2), 170–188. https://doi.org/10.1306/03B59A5D-16D1-11D7-8645000102C1865D

Ilgen, A.G., Heath, J.E., Akkutlu, I.Y., Bryndzia, L.T., Cole, D.R., Kharaka, Y.K., Kneafsey, T.J., Milliken, K.L., Pyrak-Nolte, L.J. & Suarez-Rivera, R. (2017). Shales at all scales: exploring coupled processes in mudrocks. Earth-Science Reviews, 166, 132-152. https://doi.org/10.1016/j.earscirev.2016.12.013

Ingram, R.L. (1953). Fissility of mudrocks. Bulletin of the Geological Society of America, 64, 869–878. https://doi.org/10.1130/0016-7606(1953)64[869:FOM]2.0.CO;2

Iqbal, S., Wagreich, M., Kuerschner, W.M., Gier, S. & Bibi, M. (2019). Hot-house climate during the Triassic/Jurassic transition: the evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Global and Planetary Change, 172, 15-32. https://doi.org/10.1016/j.gloplacha.2018.09.008

Ittekkot, V. (1988). Global trends in the nature or organic matter in rivers suspensions. Nature, 332, 436-438. https://doi.org/10.1038/332436a0

Jennings, D.S. & Antia, J. (2013). Petrographic characterization of the Eagle Ford Shale, South Texas: mineralogy, common constituents, and distribution of nanometer-scale pore types. AAPG Memoir 102: Electron Microscopy of Previous Shale Hydrocarbon Reservoirs, 101–113.

Jonk, R., Bohacs, K. M., & Davis, J. S. (2022). Evaluating Top Seals within a Sequence-Stratigraphic Framework: Impact on Geological Carbon Sequestration. Marine and Petroleum Geology, 146, 105920. https://doi.org/10.1016/j.marpetgeo.2022.105920

Keil., R.G. (2011). Terrestrial influences on carbon burial at sea. Proceedings of the National Academy of Sciences, 108, 9729-9730. https://doi.org/10.1073/pnas.1106928108

Keil, R.G., & Hedges, J.I. (1993). Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chemical Geology, 107(3-4), 385-388. https://doi.org/10.1016/0009-2541(93)90215-5

Keil, R.G. & Kirchman, D.L. (1994). Abiotic transformation of labile protein to refractory protein in sea water. Marine Chemistry, 45, 187–196. https://doi.org/10.1016/0304-4203(94)90002-7

Keil, R.G., Montlucon, D.B., Prahl, F.G. & Hedges, J.I. (1994). Sorptive preservation of labile organic matter in marine sediments. Nature, 370, 549–552. https://doi.org/10.1038/370549a0

Kemp, P.F. (1987). Potential impact on bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production. Marine Ecology Progress Series, 36, 151–161.

Kennedy, M.J., Pevear, D.R. & Hill, R.J. (2002). Mineral surface control of organic carbon in black shale. Science, 295, 657-660. https://doi.org/10.1126/science.1066611

Kennedy, M.J. & Wagner, T. (2011). Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Sciences, 108(24), 9776-9781. https://doi.org/10.1073/pnas.1018670108

Klaas, C. & Archer, D. (2002). Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochemical Cycles, 16(4), 1116. http://dx.doi.org/10.1029/2001GB001765.

Knaust, D. (2007). Meiobenthic Trace Fossils as Keys to the Taphanomic History of Shallow-Marine Epicontinental Carbonates. In W. Miller III (Ed.), Trace Fossils: Concepts, Problems, Prospects (p. 502-517). Elsevier, Arcata, California. https://doi.org/10.1016/B978044452949-7/50157-1

Kristensen, E. (1985). Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) Bioturbated Sediment-Water System. Journal of Coastal Research, 1(2), 109–116. http://www.jstor.org/stable/4297030

Kristensen, E. (2001). Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sediments. Geochemical Transactions, 2, 92–103. https://doi.org/10.1039/B108114D

Kristensen, E. & Holmer, M. (2001). Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO32−, and SO42−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta, 65, 419–433. https://doi.org/10.1016/S0016-7037(00)00532-9

Kristensen, E., Hansen, T., Delefosse, M., Banta, G. & Quintana, C.O. (2011). Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Marine Ecology Progress Series, 425, 125–139. https://doi.org/10.3354/meps09007

LaGrange, M.T., Konhauser, K.O., Catuneanu, O., Harris, B.S., Playter, T.L. & Gingras, M.K. (2020). Sequence stratigraphy in organic-rich marine mudstone successions using chemostratigraphic datasets. Earth-Science Reviews, 203, 103137. https://doi.org/10.1016/j.earscirev.2020.103137

LaGrange, M.T., Atienza, N.M.M., Biddle, S.K., Harris, B.S., Fiess, K.M., Terlaky, V., Konhauser, K.O. & Gingras, M.K. (2022). The nature, origin, and predictors of porosity in the middle to Late Devonian Horn River Group of the Central Mackenzie Valley, Northwest Territories, Canada. Marine and Petroleum Geology, 105738. https://doi.org/10.1016/J.MARPETGEO.2022.105738

Lazar, O.R., Bohacs, K.M., Macquaker, J.H.S., Schieber, J. & Demko, T.M. (2015a). Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85(3), 230–246. https://doi.org/10.2110/jsr.2015.11

Lazar, O.R., Bohacs, K.M., Schieber, J., Macquaker, J.H.S. & Demko, T. M. (2015b). Mudstone Primer: Lithofacies variations, diagnostic criteria, and sedimentologic-stratigraphic implications at lamina to bedset scales. SEPM Concepts in Sedimentology and Paleontology #12, 198 p. https://doi.org/10.2110/sepmcsp.12.

Lee, C. (1992). Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochimica et Cosmochimica Acta, 56, 3323–3335. https://doi.org/10.1016/0016-7037(92)90308-6

Li, Z., Bhattacharya, J. & Schieber, J. (2015). Evaluating along-strike variation using thin-bedded facies analysis, Upper Cretaceous Ferron Notom Delta, Utah. Sedimentology, 62, 2060-2089. https://doi.org/10.1111/sed.12219

Li, Z. & Schieber, J. (2018). Composite particles in mudstones: Examples from the Late Cretaceous Tununk Shale Member of the Mancos Shale Formation. Journal of Sedimentary Research, 88(12), 1319–1344. https://doi.org/10.2110/JSR.2018.69

Li, Z., Schieber, J. & Pedersen, P.K. (2021). On the origin and significance of composite particles in mudstones: Examples from the Cenomanian Dunvegan Formation. Sedimentology, 68(2), 737–754. https://doi.org/10.1111/sed.12801

Löhr, S.C. & Kennedy, M.J. (2015). Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nature Communications, 6, 1–8. https://doi.org/10.1038/ncomms7589

Löwemark, L., & Singh, A. (2024). Influence of deep-reaching bioturbation on Arctic Ocean radiocarbon chronology. Communications Earth & Environment, 5(1), 293. https://doi.org/10.1038/s43247-024-01461-0

Ma, Y., Fan, M., Lu, Y., Guo, X., Hu, H., Chen, L., Wanf, C. & Liu, X. (2016). Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation. Marine and Petroleum Geology, 75, 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024

Macquaker, J.H.S. & Gawthorpe, R.L. (1993). Mudstone lithofacies in the Kimmeridge Clay Formation, Wessex Basin, southern England: implications for the origin and controls of the distribution of mudstones. Journal of Sedimentary Petrology, 63(6), 1129–1143. https://doi.org/10.1306/D4267CC1-2B26-11D7-8648000102C1865D

Macquaker, J.H.S. & Taylor, K.G. (1997). Discussion on a sequence stratigraphic interpretation of a mud-dominated succession: the Lower Jurassic Cleveland Ironstone Formation, U.K., Reply. Journal of the Geological Society, London, 154, 913-916. https://doi.org/10.1144/gsjgs.154.5.0913

Macquaker, J.H.S. & Howell, J.K. (1999). Small-scale (< 5.0 m) vertical heterogeneity in mudstones: implications for high resolution stratigraphy in siliciclastic mudstone successions. Journal of the Geological Society, London, 156, 105-112. https://doi.org/10.1144/gsjgs.156.1.0105

Macquaker, J.H.S. & Adams, A.E. (2003). Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones. Journal of Sedimentary Research, 73(5), 735–744. https://doi.org/10.1306/012203730735

Macquaker, J.H.S., Taylor, K., & Gawthorpe, R. (2007). High resolution facies analyses of mudstones: implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. Journal of Sedimentary Research, 77, 324-339. https://doi.org/10.2110/jsr.2007.029

Macquaker, J.H.S., Bentley, S.J. & Bohacs, K.M. (2010a). Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10), 947–950. https://doi.org/10.1130/G31093.1

Macquaker, J.H.S., Keller, M. & Davies, S.J. (2010b). Algal blooms and marine snow: mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. Journal of Sedimentary Research, 80(11), 934–942. https://doi.org/10.2110/jsr.2010.085

Macquaker, J.H., Taylor, K.G., Keller, M., & Polya, D. (2014). Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. AAPG bulletin, 98(3), 587-603.

Mayer, L.M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271-1284. https://doi.org/10.1016/0016-7037(94)90381-6

Mayer, L.M. (1999). Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochimica et Cosmochimica Acta 63, 207–215. https://doi.org/10.1016/S0016-7037(99)00028-9

Mayer, L.M. & Xing, B. (2001). Organic carbon–surface area-clay relationships in acid soils. Soil Science Society of America Journal, 65, 250–258. https://doi.org/10.2136/sssaj2001.651250x

Meybeck, M. (1993). C, N, P and S in Rivers: From Sources to Global Inputs. In R. Wollast, F.T. Mackenzie & L. Chou (Eds.), Interaction of C, N, P and S Biogeochemical Cycles and Global Change (p. 163-193). Springer-Verlag. https://doi.org/10.1007/978-3-642-76064-8_6

Middelburg, J.J. & Meysman, F.J.R. (2007). Burial at sea. Science, 316, 1294–1295. https://doi.org/10.1126/science.1144001

Michaud, E., Aller, R.C. & Stora, G. (2010). Sedimentary organic matter distributions, burrowing activity, and biogeochemical cycling: natural patterns and experimental artifacts. Estuarine, Coastal and Shelf Science, 90(1), 21-34. https://doi.org/10.1016/j.ecss.2010.08.005

Milliken, K. (2014). A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks. Journal of Sedimentary Research, 84(12), 1185-1199. https://doi.org/10.2110/jsr.2014.92

Milliken, K. (2015). Basic Architecture of Particulate Sedimentary Rocks. SEPM Short Course Lecture, AAPG ACE, Denver Co. https://www.youtube.com/playlist?list=PLR_L7akfzBgm6VHedkuFQaV5Bxzp42OGQ

Milliken, K., Choh, S.J., Papazis, P. & Schieber, J. (2007). “Cherty” stringers in the Barnett Shale are agglutinated foraminifera. Sedimentary Geology, 198(3–4), 221–232. https://doi.org/10.1016/j.sedgeo.2006.12.012

Milliken, K.L., Esch, W.L., Reed, R.M. & Zhang, T. (2012). Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96, 1553–1578. https://doi.org/10.1306/12011111129

Milner, M., McLin, R. & Petriello, J. (2010). Imaging texture and porosity in mudstones and shales: comparison of secondary and ion-milled backscatter SEM methods. Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada. https://doi.org/10.2118/138975-MS

Milroy, P., Wright, V.P. & Simms, M.J. (2019). Dryland continental mudstones: deciphering environmental changes in problematic mudstones from the Upper Triassic (Carnian to Norian) Mercia Mudstone Group, south-west Britain. Sedimentology, 66, 2557-2589. https://doi.org/10.1111/sed.12626

Müller, P.J., & Suess, E. (1979). Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. Deep Sea Research Part A. Oceanographic Research Papers, 26(12), 1347-1362. https://doi.org/10.1016/0198-0149(79)90003-7

Neuendorf, K.K.E., Mehr, J.P. & Jackson, J.A. (2005). Glossary of Geology, Fifth ed (779 p.). American Geological Institute, Alexandria, Virginia.

Newport, S.M., Jerrett, R.M., Taylor, K.G., Hough, E. & Worden, R.H. (2018). Sedimentology and microfacies of a mud-rich slope succession: in the Carboniferous Bowland Basin, NW England (UK). Journal of the Geological Society, 175(2), 247–262. https://doi.org/10.1144/jgs2017-036

O’Brien, N.R. (1987). The effects of bioturbation on the fabric of shale. SEPM Journal of Sedimentary Research, 57(3), 449–455. https://doi.org/10.1306/212F8B5C-2B24-11D7-8648000102C1865D

Olsen, P.E., Remington, C.L., Cornet, B. & Thompson, K.S. (1978). Cyclic change in Late Triassic lacustrine communities. Science, 201(4357), 729–733. https://doi.org/10.1126/science.201.4357.729

Parry, L.A., Boggiani, P.C., Condon, D.J., Garwood, R.J., Leme, J.D.M., McIlroy, D., Brasier, M.D., Trindade, R., Campanha, G.A.C., Pacheco, M.L.A.F., Diniz, C.Q.C. & Liu, A.G. (2017). Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology and Evolution, 1(10), 1455–1464. https://doi.org/10.1038/s41559-017-0301-9

Passey, Q.R., Bohacs, K.M., Esch, W.L., Klimentidis, R. & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir: geologic and petrophysical characterization of unconventional shale-gas reservoirs [Conference Presentation]. International Oil and Gas Conference and Exhibition in China, Bejing, China. https://doi.org/10.2118/131350-MS

Passow, U. (2004). Switching perspectives: do mineral fluxes determine particulate organic carbon fluxes or vice versa? Geochemistry, Geophysics, Geosystems, 5(4), Q04002. https://doi.org/10.1029/2003GC000670

Paz, M., Mángano, M.G., Buatois, L.A., Desjardins, P.R., Minisini,D., Tomassini, F.G., Rodriguez, M.N., Pereira, E., & Parada, M.N. (2023). An unusual oxygen-deficient ichnofauna from the Vaca Muerta Formation: implications for the ichnofacies model. Lethaia, 56(4), 1-31. https://doi.org/10.18261/let.56.4.5

Pedersen, T.F. & Calvert, S.E. (1990). Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin, 74(4), 454–466. https://doi-org.login.ezproxy.library.ualberta.ca/10.1306/0C9B232B-1710-11D7-8645000102C1865D

Percy, E.L. & Pedersen, P.K. (2020). Detailed facies analysis of Cenomanian–Turonian organic-rich mudstones: implications for depositional controls on source rocks. Depositional Record, 6(2), 409–430. https://doi.org/10.1002/dep2.106

Pike, J., Bernhard, J.M., Moreton, S.G. & Butler, I.B. (2001). Microbioirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology, 29(10), 923–926. https://doi.org/10.1130/0091-7613(2001)029<0923:MOMSID>2.0.CO;2

Plint, A.G. (2014). Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies. Sedimentology, 61(3), 609–647. https://doi.org/10.1111/sed.12068

Plint, A.G., & Macquaker, J.H.S. (2013). Bedload Transport of Mud Across a Wide, Storm-Influenced Ramp: Cenomanian–Turonian Kaskapau Formation, Western Canada Foreland Basin—Reply. Journal of Sedimentary Research, 83(12), 1200-1201. https://doi.org/10.2110/jsr.2013.88

Plint, A.G., Macquaker, J.H.S. & Varban, B.L. (2012). Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, Western Canada Foreland Basin. Journal of Sedimentary Research, 82(11), 801–822. https://doi.org/10.2110/jsr.2012.64

Potter, P.E., Maynard, J.B., & Pryor, W.A. (1980). Sedimentology of Shale: Study Guide and References Source (306 p.). New York, Springer-Verlag.

Potter, P.E., Maynard, J.B. & Depetris, P. J. (2005). Mud and Mudstones: Introduction and Overview (279 p.). Berlin: Springer-Verlag.

Pratt, L.M. (1984). Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Colorado. American Association of Petroleum Geologists Bulletin, 9, 1146-1159. https://doi.org/10.1306/AD4616E7-16F7-11D7-8645000102C1865D

Reynolds, S. & Gorsline, D.S. (1992). Clay microfabric of deep-sea, detrital mud(stone)s, California Continental Borderland. SEPM Journal of Sedimentary Research, 62(1), 41–53. https://doi.org/10.1306/D4267884-2B26-11D7-8648000102C1865D

Rice, D.L. (1986). Early diagenesis in bioadvective sediments: relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. Journal of Marine Research 44, 149–184. https://elischolar.library.yale.edu/journal_of_marine_research/1812

Rohl, H.-J., Schmid-Rohl, A., Oschmann, W., Frimmel, A., & Schwark, L. (2001). The Posidonia Shale (Lower Torcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 165, 27-52. https://doi.org/10.1016/S0031-0182(00)00152-8

Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J. & Lyons, T.W. (2003). A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195(1–4), 229–273. https://doi.org/10.1016/S0009-2541(02)00397-2

Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 81-94. https://doi.org/10.1016/0025-3227(67)90051-5

Schieber, J. (1989). Facies and origin of shales from the Mid-Proterozoic Newland Formation, Belt Basin, Montana U.S.A. Sedimentology, 36, 203-219. https://doi.org/10.1111/j.1365-3091.1989.tb00603.x

Schieber, J. (1994). Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology, 93(3–4), 193–208. https://doi.org/10.1016/0037-0738(94)90005-1

Schieber, J. (1998). Sedimentary Features Indicating Erosion, Condensation, and Hiatuses in the Chattanooga Shale of Central Tennessee: Relevance for Sedimentary and Stratigraphic Evolution. In J. Schieber, W. Zimmerle & P.S. Sethi (Eds.), Shales and Mudstones: Basin Studies, Sedimentology and Paleontology (Vol. 1, p. 187-215). Schweizerbart, Stuttgart.

Schieber, J. (1999). Microbial mats in terrigenous clastics: the challenge of identification in the rock record. PALAIOS, 14(1), 3–12. https://doi.org/10.2307/3515357

Schieber, J. (2002). The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite concretions. Palaios, 17(1), 104-109. https://doi.org/10.1669/0883-1351(2002)017<0104:TROAOS>2.0.CO;2

Schieber, J. (2003). Simple gifts and buried treasures - implications of finding bioturbation and erosion surfaces in black shales. The Sedimentary Record, 1(2), 4–8. https://doi.org/10.2110/sedred.2003.2.

Schieber, J. (2007a). Microbial Mats on Muddy Substrates: Examples of Possible Sedimentary Features and Underlying Processes. In J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann & O. Catuneau (Eds.), Atlas of Microbial Mat Features Preserved within the Clastic Rock Record, Atlases in Geoscience (Vol. 2, p. 117-133). Elsevier, Amsterdam.

Schieber, J. (2007b). Oxidation of detrital pyrite as a cause for Marcasite Formation in marine lag deposits from the Devonian of the eastern US. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11-13), 1312-1326. https://doi.org/10.1016/j.dsr2.2007.04.005

Schieber, J. (2009). Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3–4), 292–300. https://doi.org/10.1016/j.palaeo.2008.10.027

Schieber, J. (2011a). Reverse engineering mother nature - shale sedimentology from an experimental perspective. Sedimentary Geology, 238, 1–22. https://doi.org/10.1016/j.sedgeo.2011.04.002

Schieber, J. (2011b). Marcasite in black shales—a mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds. Journal of Sedimentary Research, 81(7), 447-458. https://doi.org/10.2110/jsr.2011.41

Schieber, J. (2015). Discussion: “Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies” by Plint (2014), Sedimentology 61, 609–647. Sedimentology, 62(1), 389-393. https://doi.org/10.1111/sed.12150

Schieber, J. & Zimmerle, W. (1998). The history and promise of shale research. In J. Schieber, W. Zimmerle & P. Sethi (Eds.), Shales and Mudstones: Vol. 1: Basin studies, Sedimentology and Paleontology (Vol. 1, p. 1-10). Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

Schieber, J. & Southard, J.B. (2009). Bedload transport of mud by floccule ripples - direct observation of ripple migration processes and their implications. Geology, 37(6), 483–486. https://doi.org/10.1130/G25319A.1

Schieber, J. & Wilson, R.D. (2021). Burrows without a trace - how meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. PalZ, 95(4), 767–791. https://doi.org/10.1007/s12542-021-00590-7

Schieber, J., Southard, J.B. & Thaisen, K. (2007a). Accretion of mudstone beds from migrating floccule ripples. Science, 318(5857), 1760–1763. https://doi.org/10.1126/science.1147001

Schieber, J., Sur, S. & Banerjee, S. (2007b). Benthic Microbial Mats in Black Shale Units from the Vindhyan Supergroup, Middle Proterozoic of India: The Challenges of Recognizing the Genuine Article. In J. Schieber, P. Bose, P. Eriksson, S. Banerjee, S. Sarkar, W. Altermann & O. Catuneau (Eds.), Atlas of Microbial Mat Features Preserved within the Clastic Rock Record (p. 189-197). Elsevier, Amsterdam.

Schieber, J., Southard, J. B. & Schimmelmann, A. (2010). Lenticular shale fabrics resulting from intermittent erosion of water-rich muds - interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research, 80, 119–128. https://doi.org/10.2110/jsr.2010.005

Schieber, J., Lazar, R., Bohacs, K., Klimentidis, R., Dumitrescu, M. & Ottmann, J. (2016). An SEM study of porosity in the eagle ford shale of Texas-pore types and porosity distribution in a depositional and sequence-stratigraphic context. AAPG Memoir, 110, 167–186. https://doi.org/10.1306/13541961M1103589

Schieber, J., Shao, X., Yawar, Z., & Liu, B. (2021). Cryptic burrow traces in black shales–a petrographic Rorschach test or the real thing? Sedimentology, 68(6), 2707-2731. https://doi.org/10.1111/sed.12870

Schlesinger, W.H. & Melack, J.M. (1981). Transport of organic carbon in the world’s rivers. Tellus, 33, 172-184. https://doi.org/10.3402/tellusa.v33i2.10706

Scott, C., & Lyons, T.W. (2012). Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324, 19-27. https://doi.org/10.1016/j.chemgeo.2012.05.012

Senior, E. & Balba, T.M. (1990). Refuse decomposition. In E. Senior (Ed.), Biology of Anaerobic Organisms (p. 771-846). Wiley, New York.

Shchepetkina, A., Gingras, M.K. & Pemberton, S.G. (2018). Modern observations of floccule ripples: Petitcodiac River estuary, New Brunswick, Canada. Sedimentology, 65(2), 582–596. https://doi.org/10.1111/sed.12393

Simon, M., Grossart, H.-P., Schweitzer, B. & Ploug, H (2002). Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28, 175-211. https://doi.org/10.3354/ame028175

Stein, R. (1990). Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Marine Letters, 10, 37-44. https://doi.org/10.1007/BF02431020

Sumner, E.J., Talling, P.J. & Amy, L.A. (2009). Deposits of flows transitional between turbidity current and debris flow. Geology, 37(11), 991–994. https://doi.org/10.1130/G30059A.1

Taylor, A.M. & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, London, 150(1), 141–148. https://doi.org/10.1144/gsjgs.150.1.0141

Taylor, G.T. (1995). Microbial degradation of sorbed and dissolved protein in seawater. Limnology and Oceanography, 40, 875–885. https://doi.org/10.4319/lo.1995.40.5.0875

Taylor, K.G., & Macquaker, J.H. (2011). Iron minerals in marine sediments record chemical environments. Elements, 7(2), 113-118. https://doi.org/10.2113/gselements.7.2.113

Thiel, H. (1995). Ocean cleaning and marine snow. Marine Pollution Bulletin, 30, 490-491.

Toth, D.J. & Lerman, A. (1977). Organic matter reactivity and sedimentation rates in the ocean. American Journal of Science, 277, 465–485. https://doi.org/10.2475/ajs.277.4.465

Tourtelot, H.A. (1960). Origin and use of the word “shale”. American Journal of Science, 258, 335-343.

Tribovillard, N., Alego, T.J., Lyons, T. & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2), 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012

Tucker, M. (1982). The Field Description of Sedimentary Rocks. Geological Society of London Handbook Series, No. 2 (124 p.). Open University Press.

Tutasi, P., & Escribano, R. (2020). Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences. 17(2), 455-73. https://doi.org/10.5194/bg-17-455-2020

Tyson, R.V. (1995). Abundance of organic matter in Sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In R.V. Tyson (Ed.), Sedimentary Organic Matter (p. 81-118). Springer: Dordrecht, The Netherlands.

Ulmer-Scholle, D.S., Scholle, P.A., Schieber, J. & Raine, R.J. (2014). Mudrocks: Siltstones, Mudstones, Claystones and Shales. A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. AAPG Memoir 109 (pp. 181–212). https://doi.org/10.1306/13521911m1093637

van Nugteren, P., Herman, P.M., Moodley, L., Middelburg, J.J. & Vos, M. (2009). Spatial distribution of detrital resources determines the outcome of competition between bacteria and a facultative detritivorous worm. Limnology and Oceanography, 54, 1413–1419. https://doi.org/10.4319/lo.2009.54.5.1413

Wakeham, S.G., Lee, C., Hedges, J.I., Hernes, P.J. & Peterson, M.L. (1997a). Molecular indicators of diagenetic status in marine organic matter. Geochimica et Cosmochimica Acta, 61, 5363–5369. https://doi.org/10.1016/S0016-7037(97)00312-8

Wakeham, S.G., Hedges, J.I., Lee, C., Peterson, M.L. & Hernes, P.J. (1997b). Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep-Sea Research Part II, 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0

Way, D.S. (1973). Terrain Analysis: a guide to site selection using aerial photographic interpretation (392 p.). Stroudsburg, Pennsylvania: Cowden, Hutchinson & Ross Inc.

Weaver, C.E. (1989). Clays, Muds, and Shales: Developments in Sedimentology (Vol. 44, 819 p.). Elsevier, Amsterdam.

Westrich, J.T., & Berner, R.A. (1984). The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested 1. Limnology and oceanography, 29(2), 236-249. https://doi.org/10.4319/lo.1984.29.2.0236

Wignall, P. & Ruffell, A.H. (1990). The influence of a sudden climactic change on marine deposition in the Kimmeridgian of northwest Europe. Journal of the Geological Society, London, 147(2), 365-371. https://doi.org/10.1144/gsjgs.147.2.0365

Zou, F., Slatt, R.M. & Hlava, K. (2015). Relationship between bioturbation, microfacies and chemostratigraphy and its implication to the sequence stratigraphic framework of the Woodford Shale in Anadarko Basin, Oklahoma, USA [conference presentation]. Unconventional Resources Technology Conference, San Antonio, Texas. https://doi.org/10.15530/urtec-2015-2153831

Zonneveld, K.A.F., Versteegh, G.J.M., Kasten, S., Eglinton, T.I., Emeis, K.C., Huguet, C., Koch, B.P., de Lange, G.J., de Leeuw, J.W., Middelburg, J.J., Mollenhauet, G., Prahl, F.G., Rethemeyer, J. & Wakeham, S.G. (2010). Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeoscience, 7, 483-511. https://doi.org/10.5194/bg-7-483-2010

llustrated organic matter enrichment mechanisms under three varying bottom water physicochemical conditions

Downloads

Published

2025-03-05

Section

Publications

Categories

How to Cite

Biddle, S. K., LaGrange, M. T., Harris, B. S., Egenhoff, S., & Gingras, M. K. (2025). Current concepts in mudstone description and deposition: A synthesis for mudstone initiates. Sedimentologika, 3(1). https://doi.org/10.57035/journals/sdk.2025.e31.1621