From flood to turbidity current: combined models to simulate continent to ocean sediment transport in the Var system, France

Authors

DOI:

https://doi.org/10.57035/journals/sdk.2024.e22.1538

Keywords:

Hyperpycnal flows, Source-to-sink, Sediment discharge, Turbidity current, Reduced complexity numerical modelling

Abstract

Turbidity currents are a form of gravity-driven flow that occurs in subaqueous environments. These currents contain a low volumetric percentage of particles but are very important in transporting them from coastal to deep-marine environments. In the Var sediment routing system, southeastern France, there is a sedimentary record of turbidity currents formed by submarine landslides and flooding of the Var River. In 2006, there was continuous monitoring of the marine section that recorded four turbidity currents. To explore the connectivity between the terrestrial source and marine basin we linked two reduced complexity models of sediment transport and landscape change. The aim of the paper is to combine two models, one dedicated to the prediction of river water and sediment run-off, and the second dedicated to the transport, erosion, and sedimentation by a turbidity current. The landscape evolution model CAESAR-Lisflood was used to model discharge and sediment yield. The behaviour of turbidity currents was modelled with the cellular automata model CATS. From calibration of the two models against observations of discharge and suspended sediment in the Var River system, we find that in 2006, two rainfall events would have led to hyperpycnal turbidity currents. These two events match well with two of the four-recorded events. Focusing on the largest event we find that the source pulse of sediment from the terrestrial environment is short-lived, less than half a day, but contains a significant quantity of fine particles. The event transferred on the order of 105 m3 of suspended sediment from source to sink. This study demonstrates that hyperpycnal turbidity currents can be generated with concentrations as low as 2-6 kg/m3 at the Var River mouth far below the theoretical 40 kg/m3 threshold, suggesting active convective sedimentation in the surface plume and sea-water dilution at the flooding river mouth. A substantial amount of sediment (35% of the input volume) is directly transferred towards the deepest part of the system during a short-living hyperpycnal turbidity current. However, a considerable (65%) part remains in the surface as a hypopycnal plume feeding the hemipelagic sedimentation.

Downloads

Download data is not yet available.

References

Anthony, E. J. (1995). Impacts géomorphologiques côtiers des aménagements du Var et de son delta, Côte d’Azur, France. Hommes Et Terres Du Nord, 1(1), 73–81. https://doi.org/10.3406/htn.1995.2493

Anthony, E. J., & Julian, M. (1999). Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France. Geomorphology, 31(1-4), 337–354. https://doi.org/10.1016/S0169-555X(99)00088-4

Basani, R., Janocko, M., Cartigny, M.J.B., Hansen, M., & Eggenhuisen, J.T. (2014). MassFLOW-3D as a simulation tool for turbidity currents: some preliminary results. In A. W. Martinius, R. Ravnås, J. A. Howell, R.J. Steel, & J.P. Wonham (Eds.), From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (pp. 587–608). International Association of Sedimentologists, Special Publication 46.

Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1-2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027

Beven, K. J., Kirkby, M. J., Schofield, N., & Tagg, A. F. (1984). Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. Journal of Hydrology, 69(1-4), 119–143. https://doi.org/10.1016/0022-1694(84)90159-8

Bonneau, L., Jorry, S. J., Toucanne, S., Silva Jacinto, R., & Emmanuel, L. (2014). Millennial-Scale Response of a Western Mediterranean River to Late Quaternary Climate Changes: A View from the Deep Sea. The Journal of Geology, 122(6), 687–703. https://doi.org/10.1086/677844

Bonnecaze, R. T., Huppert, H. E., & Lister, J. R. (1993). Particle-driven gravity currents. Journal of Fluid Mechanics, 250, 339–369. https://doi.org/10.1017/S002211209300148X

Borga, M., Boscolo, P., Zanon, F., & Sangati, M. (2007). Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. Journal of hydrometeorology, 8(5), 1049–1067, https://doi.org/10.1175/JHM593.1

Brigode, P., Bourgin, F., Yassine, R., Delestre, O., & Lagrée, P. Y. (2020). Are Hydrologic-Hydraulic Coupling Approaches Able to Reproduce Alex Flash-Flood Dynamics and Impacts on Southeastern French Headwaters? In P. Gourbesville & G. Caignaert (Eds.), Springer Water. Advances in Hydroinformatics: SimHydro 2019 - Models for Extreme Situations and Crisis Management (1st ed. 2020, pp. 419–436). Springer. https://doi.org/10.1007/978-981-19-1600-7_27

Broich, K., Pflugbeil, T., Disse, M., & Nguyen, H. (2019). Using TELEMAC-2D for Hydrodynamic Modeling of Rainfall-Runoff. Proceedings of the XXVIth TELEMAC-MASCARET User Conference 2019, Toulouse, France (pp. 15–17). https://doi.org/10.5281/zenodo.3611524

Chapuis, M., Ait Elabas, A., Souriguére, K., Compagnon, F., Mayen, V., & Terrier, B. (2018). Quantification of the morphodynamics and ecological functionality of a Mediterranean river. In A. Paquier & N. Rivière (Eds.), River Flow 2018 - Ninth International Conference on Fluvial Hydraulics, 40, 2042. E3S Web of Conferences https://doi.org/10.1051/e3sconf/20184002042

Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., Almeida, G. A. M. de, & Hancock, G. R. (2013). Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model: implications for modelling landscape evolution. Earth Surface Processes and Landforms, 38(15), 1897–1906. https://doi.org/10.1002/esp.3478

D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R. (2001) A Cellular Automata model for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(1), 33-39. https://doi.org/10.1016/S1464-1909(01)85011-5

Ding, X., Salles, T., Flament, N., & Rey, P. (2019). Quantitative stratigraphic analysis in a source-to-sink numerical framework. Geoscientific Model Development, 12(6), 2571–2585. https://doi.org/10.5194/gmd-12-2571-2019

Gennesseaux, M. (1962). Une cause probable des écoulements turbides profonds dans le canyon sous-marin du Var (Alpes Maritimes). Comptes Rendus De L’académie Des Sciences, 254, 2038–2040. https://gallica.bnf.fr/ark:/12148/bpt6k40013/f343.item

Gennesseaux, M., Guibout, P., & Lacombe, H. (1971). Enregistrement de courants de turbidité dans la vallée sous-marine du Var (Alpes Maritimes). Comptes Rendus De L’académie Des Sciences, Séries D, 273, 2456–2459.

Gennesseaux, M., Mauffret, A., & Pautot, G. (1980). Les glissements sous-marins de la pente continentale niçoise et la rupture de câbles en mer Ligure (Méditerranée occidentale). Comptes Rendus De L’académie Des Sciences, Séries D, 290, 959–962.

Gourbesville, P., & Ghulami, M. (2022). Deterministic Modelling for Extreme Flood Events - Application to the storm Alex. In M. Ortega-Sánchez (Ed.), Proceedings of the 39th IAHR World Congress (Online), Granada, Spain (pp. 19–24). International Association for Hydro-Environment Engineering and Research. https://doi.org/10.3850/IAHR-39WC2521716X20221402

Grandjean, G., Pennetier, C., Bitri, A., Meric, O., & Malet, J.‑P. (2006). Caractérisation de la structure interne et de l’état hydrique de glissements argilo-marneux par tomographie géophysique : l’exemple du glissement-coulée de Super-Sauze (Alpes du Sud, France). Comptes Rendus. Géoscience, 338(9), 587–595. https://doi.org/10.1016/j.crte.2006.03.013

Guidi-Guilvard, L. (2006). Etude de l’effet de la dynamique sédimentaire sur la méiofaune dans le canyon du Var. Campagne ENVAR 1. IFRAMER. https://archimer.ifremer.fr/doc/00432/54362/

Habib, P. (1994). Aspects géotechniques de l’accident du nouveau port de Nice. Revue Française de Géotechnique, 65, 3–15.

Hage, S., Cartigny, M. J. B., Sumner, E. J., Clare, M. A., Hughes Clarke, J. E., Talling, P. J., Lintern, D. G., Simmons, S. M., Silva Jacinto, R., Vellinga, A. J., & Allin, J.R. (2019). Direct Monitoring Reveals Initiation of Turbidity Currents From Extremely Dilute River Plumes. Geophysical Research Letters, 46, 11310–11320. https://doi.org/10.1029/2019GL084526

Jaeggi, M. (2003). Etude du fonctionnement physique du lit de fleuve Var: Rapport d’Etude (0.81.5561). SMEBVV, Syndicate Mixte d’Etudes de la Basse Vallee du Var.

Kane, I. A., Clare, M. A., Miramontes, E., Wogelius, R., Rothwell, J. J., Garreau, P., & Pohl, F. (2020). Seafloor microplastic hotspots controlled by deep-sea circulation. Science, 368(6495), 1140–1145. https://doi.org/10.1126/science.aba5899

Keesstra, S. D., Temme, A., Schoorl, J. M., & Visser, S. M. (2014). Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, 212, 97–107. https://doi.org/10.1016/j.geomorph.2013.04.021

Khripounoff, A., Vangriesheim, A., Crassous, P., & Etoubleau, J. (2009). High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea). Marine Geology, 263(1-4), 1–6. https://doi.org/10.1016/j.margeo.2009.03.014

Laurent, R. (1971). Charge solide en suspension et géochimie das un fleuve cotier Méditerranéen: Le Var (Alpes-Maritimes) [Thése de 3eme Cycle de Sédimentologie]. Université de Nice, Nice.

Liébault, F., Melun, G., Piton, G., Chapuis, M., Passy, P., & Tacon, S. (2024). Channel change during catastrophic flood: Example of Storm Alex in the Vésubie and Roya valleys. Geomorphology, 446, 109008. https://doi.org/10.1016/j.geomorph.2023.109008

Ligier P.L. (2016). Implementation of a rainfall-runoff model in TELEMAC-2D. Proceedings of the XXIIIrd TELEMAC-MASCARET User Conference 2016, Paris, France (pp. 13–19).

Ma, Q., & Gourbesville, P. (2020). Modelling Strategy of Deterministic Distributed Hydrological Model Development at Catchment Scale. In P. Gourbesville & G. Caignaert (Eds.), Springer Water. Advances in Hydroinformatics: SimHydro 2019 - Models for Extreme Situations and Crisis Management (1st ed. 2020, pp. 607–617). Springer. https://doi.org/10.1007/978-981-15-5436-0_47

Mariotti, A., Blard, P. H., Charreau, J., Petit, C., & Molliex, S. (2019). Denudation systematics inferred from in situ cosmogenic 10Be concentrations in fine (50–100 µm) and medium (100–250 µm) sediments of the Var River basin, southern French Alps. Earth Surface Dynamics, 7(4), 1059–1074. https://doi.org/10.5194/esurf-7-1059-2019

Mas, V. (2009). Caractérisation de l’activité hydrosédimentaire dans le système turbiditique du Var (NO Méditerranée) et de son enregistrement dans l’archive sédimentaire [Sédimentologie Marine et Paléoclimats]. Université Bordeaux I, Bordeaux.

Migeon, S. (2006). MALISAR. French Oceanographic Cruises. https://doi.org/10.18142/207

Migeon, S., Savoye, B., & Faugeres, J. C. (2000). Quaternary development of migrating sediment waves in the Var deep-sea fan: distribution, growth pattern, and implication for levee evolution. Sedimentary Geology, 133(3-4), 265–293. https://doi.org/10.1016/S0037-0738(00)00043-9

Migeon, S., Savoye, B., Zanella, E., Mulder, T., Faugères, J.‑C., & Weber, O. (2001). Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): significance for sediment transport and deposition and for the mechanisms of sediment-wave construction. Marine and Petroleum Geology, 18(2), 179–208. https://doi.org/10.1016/S0264-8172(00)00060-X

Migeon, S., Cattaneo, A., Hassoun, V., Larroque, C., Corradi, N., Fanucci, F., Dano, A., Mercier de Lepinay, B., Sage, F., & Gorini, C. (2011). Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessment. Marine Geophysical Research, 32, 225–243). https://doi.org/10.1007/s11001-011-9123-3

Mulder, T., Migeon, S., Savoye, B., & Jouanneau, J. M. (2001). Twentieth century floods recorded in the deep Mediterranean sediments. Geology, 29(11), 1011. https://doi.org/10.1130/0091-7613(2001)029%3C1011:TCFRIT%3E2.0.CO;2

Mulder, T., Savoye, B., Piper, D. J. W., & Syvitski, J. P. M. (1998). The Var submarine sedimentary system: understanding Holocene sediment delivery processes and their importance to the geological record. Geological Society, London, Special Publications, 129(1), 145–166. https://doi.org/10.1144/GSL.SP.1998.129.01.10

Mulder, T., Tisot, J. P., Cochonat, P., & Bourillet, J. F. (1994). Regional assessment of mass failure events in the Baie des Anges, Mediterranean Sea. Marine Geology, 122(1-2), 29–45. https://doi.org/10.1016/0025-3227(94)90203-8

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology. 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Nasr-Azadani, M. M., & Meiburg, E. (2014). Turbidity currents interacting with three-dimensional seafloor topography. Journal of Fluid Mechanics, 745, 409–443. https://doi.org/10.1017/jfm.2014.47

Oliveros, C. (1996). Transports solids: modèles et conditions d’application en région PACA (Rapport BRGM R39474). Bureau de Recherches Géologiques et Minières.

Parker, G., Fukushima, Y., & Pantin, H. M. (1986). Self-accelerating turbidity currents. Journal of Fluid Mechanics, 171(1), 145. https://doi.org/10.1017/S0022112086001404

Parsons, J. D., Bush, J. W. M., & Syvitski, J. P. M. (2001). Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology, 48(2), 465–478. https://doi.org/10.1046/j.1365-3091.2001.00384.x

Piper, D. J. W., & Savoye, B. (1993). Processes of late Quaternary turbidity current flow and deposition on the Var deep-sea fan, north-west Mediterranean Sea. Sedimentology, 40(3), 557–582. https://doi.org/10.1111/j.1365-3091.1993.tb01350.x

Poggio, L., Sousa, L. M. de, Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021

Postma, G., Nemec, W., & Kleinspehn, K. L. (1988). Large floating clasts in turbidites: a mechanism for their emplacement. Sedimentary Geology, 58(1), 47–61. https://doi.org/10.1016/0037-0738(88)90005-X

Salles, T., Lopez, S., Cacas, M. C., & Mulder, T. (2007). Cellular automata model of density currents. Geomorphology, 88(1-2), 1–20. https://doi.org/10.1016/j.geomorph.2006.10.016

Schoorl, J. M., Veldkamp, A., & Bouma, J. (2002). Modeling Water and Soil Redistribution in a Dynamic Landscape Context. Soil Science Society of America Journal, 66(5), 1610–1619. https://doi.org/10.2136/sssaj2002.1610

Skinner, C. J., Coulthard, T. J., Schwanghart, W., van de Wiel, M. J., & Hancock, G. (2018). Global sensitivity analysis of parameter uncertainty in landscape evolution models. Geoscientific Model Development, 11(12), 4873–4888. https://doi.org/10.5194/gmd-11-4873-2018

Talling, P. J., Cartigny, M. J. B., Pope, E., Baker, M., Clare, M. A., Heijnen, M., Hage, S., Parsons, D. R., Simmons, S. M., Paull, C. K., Gwiazda, R., Lintern, G., Hughes Clarke, J. E., Xu, J., Silva Jacinto, R., & Maier, K. L. (2023). Detailed monitoring reveals the nature of submarine turbidity currents. Nature Reviews Earth & Environment, 4(9), 642–658. https://doi.org/10.1038/s43017-023-00458-1

Teles, V., Chauveau, B., Joseph, P., Weill, P., & Maktouf, F. (2016). CATS – A process-based model for turbulent turbidite systems at the reservoir scale. Comptes Rendus Geoscience, 348(7), 489–498. https://doi.org/10.1016/j.crte.2016.03.002

van de Wiel, M. J., Coulthard, T. J., Macklin, M. G., & Lewin, J. (2007). Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology, 90(3-4), 283–301. https://doi.org/10.1016/j.geomorph.2006.10.024

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, J., Perktold, J., Cimrmanm, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., & van Mulbregt, P. (2020). Scipy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Yassine, R., Lastes, M., Argence, A., Gandouin, A., Imperatrice, C., Michel, P., Zhang, R., Brigode, P., Delestre, O., & Taccone, F. (2020). Simulation of the Alex Storm Flash-Flood in the Vésubie Catchment (South Eastern France) Using Telemac-2D Hydraulic Code. In P. Gourbesville & G. Caignaert (Eds.), Springer Water. Advances in Hydroinformatics: SimHydro 2019 - Models for Extreme Situations and Crisis Management (1st ed. 2020, pp. 847–863). Springer. https://doi.org/10.1007/978-981-19-1600-7_52

Modelled turbidity current height and velocity at different snapshots in time

Published

02-09-2024 — Updated on 10-09-2024

Section

Publications

Categories

How to Cite

Remaud, A., Armitage, J. J., Teles, V., Rohais, S., & Mulder, T. (2024). From flood to turbidity current: combined models to simulate continent to ocean sediment transport in the Var system, France. Sedimentologika, 2(2). https://doi.org/10.57035/journals/sdk.2024.e22.1538