Pantanal Basin river muds from source to sink: compositional changes in a tropical back-bulge depozone

Authors

DOI:

https://doi.org/10.57035/journals/sdk.2024.e21.1342

Keywords:

Clay mineralogy, Geochemistry, Chemical weathering, Tropical wetlands

Abstract

The Pantanal Basin is a low-gradient back-bulge analog for distal depozones associated with retroarc foreland basin systems in the geological record. Extensive lowland environments including fluvial megafans, floodplains, wetlands, and lakes make up the Pantanal Basin today, with detrital sediment sources located along basin-margin plateaus and remnants of ancient orogenic belts. Here, we examine the chemical composition and mineralogy of modern fine-fraction fluvial sediments using X-ray methods to assess the influence of chemical weathering on sediment composition in this tropical basin. The abundance of clay minerals follows the rank order pattern of kaolinite > vermiculite > illite > smectite. Kaolinite is more abundant in river muds from the north-central than the southern Pantanal, suggesting strong extant chemical weathering plus the potential for clays inherited from siliciclastic parent lithologies that formed under Mesozoic greenhouse conditions. Illite occurs in sediments draining the North Paraguay Belt and limited parts of the South Paraguay Belt, and it reflects the influence of mechanical weathering of the metamorphic facies. In the southeastern Pantanal, vermiculite is a dominant constituent of the Miranda River watershed, which drains dacitic parent rocks and rhodic ferralsols. The geochemistry of the sediments reveals the interplay of quartz addition and clays inherited from the parent rocks. The most quartzose sediments are encountered at the confluence of the Paraguay River and the Taquari River megafan, where the cumulative effect of the 2 – 3-month flood pulse maximizes chemical weathering. Clay plus silt in back-bulge basins are controlled by climate > soils > parent rocks.

Downloads

Download data is not yet available.

References

Almeida, F. F. M. de, Hasui, Y., & Neves, B. B. de B. (1976). The Upper Precambrian of South America. Boletim IG, 7, 45–80. https://doi.org/10.11606/issn.2316-8978.v7i0p45-80

Alvarenga, C. J. S., Boggiani, P. C., Babinski, M., Dardenne, M. A., Figueiredo, M. F., Dantas, E. L., Uhlein, A., Santos, R. V., Sial, A. N., & Trompette, R. (2011). Chapter 45 Glacially influenced sedimentation of the Puga Formation, Cuiabá Group and Jacadigo Group, and associated carbonates of the Araras and Corumbá groups, Paraguay Belt, Brazil. Geological Society, London, Memoirs, 36(1), 487–497. https://doi.org/10.1144/M36.45

Ambrosi, J. P., Nahon, D., & Herbillon, A. J. (1986). The epigenetic replacement of kaolinite by hematite in laterite — petrographic evidence and the mechanisms involved. Geoderma, 37(4), 283–294. https://doi.org/10.1016/0016-7061(86)90030-3

Aparicio, P., Ferrell, R. E., & Galán, E. (2010). Mg and K exchange cation effects on the XRD analysis of soil clays. Philosophical Magazine, 90(17–18), 2373–2385. https://doi.org/10.1080/14786430903559417

Aparicio, P., Galán, E., & Ferrell, R. E. (2006). A new kaolinite order index based on XRD profile fitting. Clay Minerals, 41(4), 811–817. https://doi.org/10.1180/0009855064140220

Aristizábal, E., Roser, B., & Yokota, S. (2005). Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Engineering Geology, 81(4), 389–406. https://doi.org/10.1016/j.enggeo.2005.08.001

Assine, M. L. (2005). River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology, 70(3), 357–371. https://doi.org/10.1016/j.geomorph.2005.02.013

Assine, M. L., Merino, E. R., Pupim, F. N., Warren, L. V., Guerreiro, R. L., & McGlue, M. M. (2016). Geology and Geomorphology of the Pantanal Basin. In I. Bergier & M. L. Assine (Eds.), Dynamics of the Pantanal Wetland in South America (p. 23–50). Springer International Publishing. https://doi.org/10.1007/698_2015_349

Austin, J. C., Perry, A., Richter, D. D., & Schroeder, P. A. (2018). Modifications of 2:1 Clay Minerals in a Kaolinite-Dominated Ultisol under Changing Land-Use Regimes. Clays and Clay Minerals, 66(1), 61–73. https://doi.org/10.1346/CCMN.2017.064085

Balan, E., Fritsch, E., Allard, T., & Calas, G. (2007). Inheritance vs. neoformation of kaolinite during lateritic soil formation: a case study in the middle Amazon Basin. Clays and Clay Minerals, 55(3), 253–259. https://doi.org/10.1346/CCMN.2007.0550303

Barboza, E., Santos, A., Fernandes, C., & Geraldes, M. (2018). Paraguay Belt lithostratigraphic and tectonic characterization: implications in the evolution of the orogen (Mato Grosso-Brazil). Journal of Sedimentary Environments, 3, 54–73. https://doi.org/10.12957/jse.2018.34219

Bauluz, B., Mayayo, M. J., Yuste, A., & López, J. M. G. (2008). Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): analysis by XRD, SEM and TEM. Clay Minerals, 43(3), 459–475. https://doi.org/10.1180/claymin.2008.043.3.10

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214

Benedetti, M. M., Curi, N., Sparovek, G., Carvalho Filho, A. de, & Silva, S. H. G. (2011). Updated Brazilian’s Georeferenced Soil Database – an Improvement for International Scientific Information Exchanging. In Principles, Application, and Assessment in Soil Science (p. 408). https://doi.org/10.5772/29627

Bertolini, G., Marques, J. C., Hartley, A. J., Basei, M. A. S., Frantz, J. C., & Santos, P. R. (2021). Determining sediment provenance history in a Gondwanan erg: Botucatu formation, Northern Paraná Basin, Brazil. Sedimentary Geology, 417, 105883. https://doi.org/10.1016/j.sedgeo.2021.105883

Bertolini, G., Marques, J. C., Hartley, A. J., Da-Rosa, A. A. S., Scherer, C. M. S., Basei, M. A. S., & Frantz, J. C. (2020). Controls on Early Cretaceous desert sediment provenance in south-west Gondwana, Botucatu Formation (Brazil and Uruguay). Sedimentology, 67(5), 2672-2690. https://doi.org/10.1111/sed.12715

Bertolino, S., & Depetris, P. (1992). Mineralogy of the Clay-Sized Suspended Load from Headwater Tributaries on the Paraná River: Bermejo, Pilcomayo, and Paraguay Rivers (Vol. 52, p. 19–31).

Bhattacharyya, T., Pal, D. K., & Srivastava, P. (2000). Formation of gibbsite in the presence of 2:1 minerals: an example from Ultisols of northeast India. Clay Minerals, 35(5), 827–840. https://doi.org/10.1180/000985500547269

Biscaye, P. E. (1965). Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. GSA Bulletin, 76(7), 803–832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

Braga, L. G., Pierosan, R., & Geraldes, M. C. (2019). Paleoproterozoic (2.0 Ga) volcano-plutonism in the southeastern region of the Amazon Craton: Petrological aspects and geotectonic implications. Geological Journal, 55(6), 4352–4374. https://doi.org/10.1002/gj.3686

Brewer, C. J., Hampson, G. J., Whittaker, A. C., Roberts, G. G., & Watkins, S. E. (2020). Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth-Science Reviews, 207, 103217. https://doi.org/10.1016/j.earscirev.2020.103217

Brown, G., & Brindley, G. W. (1980). X-ray Diffraction Procedures for Clay Mineral Identification. In G. W. Brindley & G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-Ray Identification (Vol. 5, p. 305-359). Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/mono-5.5

Camargo, M. N., & Bennema, J. (1966). Delineamento esquemático dos solos do Brasil. Pesquisa Agropecuária Brasileira, 1(1), 47–54.

Campodonico, V. A., García, M. G., & Pasquini, A. I. (2016). The geochemical signature of suspended sediments in the Parana River basin: Implications for provenance, weathering and sedimentary recycling. CATENA, 143, 201–214. https://doi.org/10.1016/j.catena.2016.04.008

Caracciolo, L. (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 209, 103226. https://doi.org/10.1016/j.earscirev.2020.103226

Cedraz, V., Julià, J., & Assumpção, M. (2020). Joint Inversion of Receiver Functions and Surface-Wave Dispersion in the Pantanal Wetlands: Implications for Basin Formation. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018337. https://doi.org/10.1029/2019JB018337

Certini, G., Wilson, M. J., Hillier, S. J., Fraser, A. R., & Delbos, E. (2006). Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata, Central Italy. Geoderma, 133(3), 173–190. https://doi.org/10.1016/j.geoderma.2005.07.005

Céspedes-Payret, C., Piñeiro, G., Gutiérrez, O., & Panario, D. (2012). Land use change in a temperate grassland soil: Afforestation effects on chemical properties and their ecological and mineralogical implications. Science of The Total Environment, 438, 549–557. https://doi.org/10.1016/j.scitotenv.2012.08.075

Chamley, H. (1989). Clay Sedimentology. (p. 623). Springer. https://doi.org/10.1007/978-3-642-85916-8

Chase, C. G., Sussman, A. J., & Coblentz, D. D. (2009). Curved Andes: Geoid, forebulge, and flexure. Lithosphere, 1(6), 358–363. https://doi.org/10.1130/L67.1

Cleaves, E. T., Godfrey, A. E., & Bricker, O. P. (1970). Geochemical Balance of a Small Watershed and Its Geomorphic Implications. GSA Bulletin, 81(10), 3015–3032. https://doi.org/10.1130/0016-7606(1970)81[3015:GBOASW]2.0.CO;2

Cohen, A., McGlue, M., Ellis, G., Zani, H., Swarzenski, P., Assine, M., & Silva, A. (2015). Lake formation, characteristics, and evolution in retroarc deposystems: A synthesis of the modern Andean orogen and its associated basins. Memoir of the Geological Society of America, 212, 309–335. https://doi.org/10.1130/2015.1212(16)

Cole, M. M. (1960). Cerrado, Caatinga and Pantanal: The Distribution and Origin of the Savanna Vegetation of Brazil. The Geographical Journal, 126(2), 168–179. https://doi.org/10.2307/1793957

Coringa, E. de A. O., Couto, E. G., Otero Perez, X. L., & Torrado, P. V. (2012). Atributos de solos hidromórficos no Pantanal Norte Matogrossense. Acta Amazonica, 42, 19–28. https://doi.org/10.1590/S0044-59672012000100003

Corrêa, J. C., Cavallaro, F. A., Garcia, R. H. L., Santos, R. S., Amade, R. A., Bernardes, T. L. da S., Velo, A. F., Mesquita, C. H., & Hamada, M. M. (2021). Chemical and physical analysis of sandstone rock from Botucatu Formation. Brazilian Journal of Radiation Sciences, 9(1A), 1–19. https://doi.org/10.15392/bjrs.v9i1A.1479

Cruz, A. T., Dinis, P. A., Lucic, M., & Gomes, A. (2022). Spatial variations in sediment production and surface transformations in subtropical fluvial basins (Caculuvar River, south-west Angola): Implications for the composition of sedimentary deposits. The Depositional Record, 9(1), 83–98. https://doi.org/10.1002/dep2.208

Deckers, J., Nachtergaele, F., & Spaargaren, O. (2003). Tropical soils in the classification systems of USDA, FAO and WRB. Evolution of Tropical Soil Science: Past and Future: Workshop Brussels, 6 March 2002, 79–94.

Deconinck, J. F., Strasser, A., & Debrabant, P. (1988). Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura). Clay Minerals, 23(1), 91–103. https://doi.org/10.1180/claymin.1988.023.1.09

Delarmelinda, E. A., Souza Júnior, V. S. de, Wadt, P. G. S., Deng, Y., Campos, M. C. C., & Câmara, E. R. G. (2017). Soil-landscape relationship in a chronosequence of the middle Madeira River in southwestern Amazon, Brazil. CATENA, 149, 199–208. https://doi.org/10.1016/j.catena.2016.09.021

Depetris, P. J., & Griffin, J. J. (1968). Suspended Load in the Río De La Plata Drainage Basin. Sedimentology, 11(1–2), 53–60. https://doi.org/10.1111/j.1365-3091.1968.tb00840.x

Depetris, P., & Probst, J.-L. (1998). Variability of the Chemical Index of Alteration (CIA) in the Paraná River Suspended Load. Mineralogical Magazine, 62A. https://doi.org/10.1180/minmag.1998.62A.1.193

Dill, H. G. (2016). Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16–129. https://doi.org/10.1016/j.earscirev.2016.07.003

dos Santos Vila da Silva, J., Pott, A., & Chaves, J. V. B. (2021). Classification and Mapping of the Vegetation of the Brazilian Pantanal. In G. A. Damasceno-Junior & A. Pott (Eds.), Flora and Vegetation of the Pantanal Wetland (p. 11–38). Springer International Publishing. https://doi.org/10.1007/978-3-030-83375-6_2

Drever, J. I. (1973). The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. American Mineralogist, 58(5–6), 553–554.

Eberl, D. D., Farmer, V. C., Barrer, R. M., Fowden, L., Barrer, R. M., & Tinker, P. B. (1997). Clay mineral formation and transformation in rocks and soils. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 311(1517), 241–257. https://doi.org/10.1098/rsta.1984.0026

Fagundes, J. R. T., & Zuquette, L. V. (2011). Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environmental Earth Sciences, 62(4), 831–845. https://doi.org/10.1007/s12665-010-0570-y

Faleiros, F. M., Pavan, M., Remédio, M. J., Rodrigues, J. B., Almeida, V. V., Caltabeloti, F. P., Pinto, L. G. R., Oliveira, A. A., Pinto de Azevedo, E. J., & Costa, V. S. (2016). Zircon U–Pb ages of rocks from the Rio Apa Cratonic Terrane (Mato Grosso do Sul, Brazil): New insights for its connection with the Amazonian Craton in pre-Gondwana times. Gondwana Research, 34, 187–204. https://doi.org/10.1016/j.gr.2015.02.018

FAO. (1971). Soil map of the world IV. UNESCO (p. 193). UNIPUB, Inc.: New York, NY.

Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

Fernandes, L. A., & Magalhães Ribeiro, C. M. (2015). Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil). Journal of South American Earth Sciences, 61, 71–90. https://doi.org/10.1016/j.jsames.2014.11.007

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fink, J. R., Inda, A. V., Almeida, J. A. de, Bissani, C. A., Giasson, E., & Nascimento, P. C. do. (2014). Chemical and mineralogical changes in a Brazilian Rhodic Paleudult under different land use and managements. Revista Brasileira de Ciência Do Solo, 38, 1304–1314. https://doi.org/10.1590/S0100-06832014000400026

França, A. B., Arajo, L. M., Maynard, J. B., & Potter, P. E. (2003). Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America. AAPG Bulletin, 87(7), 1073–1082. https://doi.org/10.1306/02260301071

Furian, S., Barbiéro, L., Boulet, R., Curmi, P., Grimaldi, M., & Grimaldi, C. (2002). Distribution and dynamics of gibbsite and kaolinite in an oxisol of Serra do Mar, southeastern Brazil. Geoderma, 106(1), 83–100. https://doi.org/10.1016/S0016-7061(01)00117-3

Furquim, S. A. C., Barbiéro, L., Graham, R. C., de Queiroz Neto, J. P., Ferreira, R. P. D., & Furian, S. (2010). Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma, 158(3), 331–342. https://doi.org/10.1016/j.geoderma.2010.05.015

Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V., & Lupker, M. (2011). Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302(1), 107–120. https://doi.org/10.1016/j.epsl.2010.11.043

Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V., & Najman, Y. (2010). Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299(3), 368–381. https://doi.org/10.1016/j.epsl.2010.09.017

Garzanti, E., Padoan, M., Setti, M., López-Galindo, A., & Villa, I. M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 61–74. https://doi.org/10.1016/j.chemgeo.2013.12.016

Garzanti, E., Pastore, G., Resentini, A., Vezzoli, G., Vermeesch, P., Ncube, L., Niekerk, H. J. V., Jouet, G., & Dall’Asta, M. (2021). The Segmented Zambezi Sedimentary System from Source to Sink: 1. Sand Petrology and Heavy Minerals. The Journal of Geology, 129(4), 343–369. https://doi.org/10.1086/715792

Garzanti, E., Resentini, A., Vezzoli, G., Andò, S., Malusà, M., & Padoan, M. (2012). Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280, 149–164. https://doi.org/10.1016/j.sedgeo.2012.03.012

Garzanti, E., Vermeesch, P., Vezzoli, G., Andò, S., Botti, E., Limonta, M., Dinis, P., Hahn, A., Baudet, D., De Grave, J., & Yaya, N. K. (2019). Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 197, 102918. https://doi.org/10.1016/j.earscirev.2019.102918

Gleyzer, A., Denisyuk, M., Rimmer, A., & Salingar, Y. (2004). A Fast Recursive Gis Algorithm for Computing Strahler Stream Order in Braided and Nonbraided Networks1. JAWRA Journal of the American Water Resources Association, 40(4), 937–946. https://doi.org/10.1111/j.1752-1688.2004.tb01057.x

Goldich, S. S. (1938). A Study in Rock-Weathering. The Journal of Geology, 46(1), 17–58. https://doi.org/10.1086/624619

Guinoiseau, D., Fekiacova, Z., Allard, T., Druhan, J. L., Balan, E., & Bouchez, J. (2021). Tropical Weathering History Recorded in the Silicon Isotopes of Lateritic Weathering Profiles. Geophysical Research Letters, 48(19), e2021GL092957. https://doi.org/10.1029/2021GL092957

Guyot, J. L., Jouanneau, J. M., Soares, L., Boaventura, G. R., Maillet, N., & Lagane, C. (2007). Clay mineral composition of river sediments in the Amazon Basin. CATENA, 71(2), 340–356. https://doi.org/10.1016/j.catena.2007.02.002

Hamilton, S. (2002). Hydrological controls of ecological structure and function in the Pantanal wetland (Brazil). The Ecohydrology of South American Rivers and Wetlands, 6, 133–158.

Han, W., Hong, H. L., Yin, K., Churchman, G. J., Li, Z. H., & Chen, T. (2014). Pedogenic alteration of illite in subtropical China. Clay Minerals, 49(3), 379–390. https://doi.org/10.1180/claymin.2014.049.3.03

Hartley, A. J., Weissmann, G. S., Bhattacharayya, P., Nichols, G. J., Scuderi, L. A., Davidson, S. K., Leleu, S., Chakraborty, T., Ghosh, P., & Mather, A. E. (2013). Soil Development on Modern Distributive Fluvial Systems: Preliminary Observations with Implications for Interpretation of Paleosols in the Rock Record. In S. G. Driese & L. C. Nordt (Eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology: Paleosols and Soil Surface Analog Systems (Vol. 104, p. 149-158). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/sepmsp.104.10

Harvey, R. D., & Beck, C. W. (1962). Hydrothermal regularly interstratified chlorite-vermiculite and tobermorite in alteration zones at Goldfield, Nevada. In E. Ingerson (Ed.), Clays and Clay Minerals (p. 343–354). Pergamon. https://doi.org/10.1016/B978-1-4831-9842-2.50024-9

Hatzenbühler, D., Caracciolo, L., Weltje, G. J., Piraquive, A., & Regelous, M. (2022). Lithologic, geomorphic, and climatic controls on sand generation from volcanic rocks in the Sierra Nevada de Santa Marta massif (NE Colombia). Sedimentary Geology, 429, 106076. https://doi.org/10.1016/j.sedgeo.2021.106076

He, J., Garzanti, E., Dinis, P., Yang, S., & Wang, H. (2020). Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China) - 1. Geochemistry and clay mineralogy. Chemical Geology, 558, 119860. https://doi.org/10.1016/j.chemgeo.2020.119860

Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481

Hillier, S. (1995). Erosion, Sedimentation and Sedimentary Origin of Clays. In B. Velde (Ed.), Origin and Mineralogy of Clays: Clays and the Environment (p. 162–219). Springer. https://doi.org/10.1007/978-3-662-12648-6_4

Hirata, R., Gesicki, A., Sracek, O., Bertolo, R., Giannini, P. C., & Aravena, R. (2011). Relation between sedimentary framework and hydrogeology in the Guarani Aquifer System in São Paulo state, Brazil. Journal of South American Earth Sciences, 31(4), 444–456. https://doi.org/10.1016/j.jsames.2011.03.006

Holz, M. (2015). Mesozoic paleogeography and paleoclimates – A discussion of the diverse greenhouse and hothouse conditions of an alien world. Journal of South American Earth Sciences, 61, 91–107. https://doi.org/10.1016/j.jsames.2015.01.001

Horbe, A. M. C., Motta, M. B., de Almeida, C. M., Dantas, E. L., & Vieira, L. C. (2013). Provenance of Pliocene and recent sedimentary deposits in western Amazônia, Brazil: Consequences for the paleodrainage of the Solimões-Amazonas River. Sedimentary Geology, 296, 9–20. https://doi.org/10.1016/j.sedgeo.2013.07.007

Horton, B. K. (2022). Unconformity development in retroarc foreland basins: implications for the geodynamics of Andean-type margins. Journal of the Geological Society, 179(3), jgs2020-263. https://doi.org/10.1144/jgs2020-263

Horton, B. K., & DeCelles, P. G. (1997). The modern foreland basin system adjacent to the Central Andes. Geology, 25(10), 895–898. https://doi.org/10.1130/0091-7613(1997)025<0895:TMFBSA>2.3.CO;2

IBGE. (2002). Mapa de Clima do Brasil. Instituto Brasileiro de Geografia e Estatística. https://www.ibge.gov.br/geociencias/informacoes-ambientais/climatologia/15817-clima.html

Ito, A., & Wagai, R. (2017). Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Scientific Data, 4(1), 170103. https://doi.org/10.1038/sdata.2017.103

Ivory, S. J., McGlue, M. M., Spera, S., Silva, A., & Bergier, I. (2019). Vegetation, rainfall, and pulsing hydrology in the Pantanal, the world’s largest tropical wetland. Environmental Research Letters, 14, 124017. https://doi.org/10.1088/1748-9326/ab4ffe

Jackson, M. L. (1969). Soil Chemical Analysis - Advanced Course. Soil Chemical Analysis - Advanced Course., Edition 2. (p. 1790)

Johnsson, M. J. (1993). The system controlling the composition of clastic sediments. In M. J. Johnsson & A. Basu (Eds.), Processes Controlling the Composition of Clastic Sediments (Vol. 284, p. 1-19). Geological Society of America. https://doi.org/10.1130/SPE284-p1

Johnsson, M. J., & Meade, R. H. (1990). Chemical weathering of fluvial sediments during alluvial storage; the Macuapanim Island point bar, Solimoes River, Brazil. Journal of Sedimentary Research, 60(6), 827–842. https://doi.org/10.1306/212F9296-2B24-11D7-8648000102C1865D

Jonell, T. N., Clift, P. D., Hoang, L. V., Hoang, T., Carter, A., Wittmann, H., Böning, P., Pahnke, K., & Rittenour, T. (2017). Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam. Basin Research, 29(S1), 659–683. https://doi.org/10.1111/bre.12199

Junk, W. J., da Cunha, C. N., Wantzen, K. M., Petermann, P., Strüssmann, C., Marques, M. I., & Adis, J. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences, 68(3), 278–309. https://doi.org/10.1007/s00027-006-0851-4

Lacerda Filho, J. V. de, Abreu Filho, W., Valente, C. R., Oliveira, C. C. de, & Albuquerque, M. C. de. (2004). Geologia e recursos minerais do estado de Mato Grosso. CPRM; Secretaria de Estado de Indústria, Comércio, Minas e Energia do Estado de Mato Grosso (SICME-MT). http://rigeo.cprm.gov.br/jspui/handle/doc/4871

Lacerda Filho, J. V. de, Brito, R. S. C. de, Silva, M. da G. da, Oliveira, C. C. de, Moreton, L. C., Martins, E. G., Lopes, R. da C., Lima, T. M., Larizzatt, J. H., & Valente, C. R. (2006). Geologia e recursos minerais do estado de Mato Grosso do Sul. CPRM; SEPROTUR/MS; EGRHP/MS. http://rigeo.cprm.gov.br/jspui/handle/doc/10217

Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A., & Meunier, A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals 37(1): 1-22. https://doi.org/10.1180/0009855023710014

Lehner, B., Verdin, K., & Jarvis, A. (2008). New Global Hydrography Derived From Spaceborne Elevation Data. Eos, Transactions American Geophysical Union, 89(10), 93–94. https://doi.org/10.1029/2008EO100001

Liptzin, D., & Silver, W. L. (2009). Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biology and Biochemistry, 41(8), 1696–1702. https://doi.org/10.1016/j.soilbio.2009.05.013

Liu, Z., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y., & Li, J. (2012). Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology, 291, 1–12. https://doi.org/10.1016/j.chemgeo.2011.11.015

Lo, E. L., Silva, A., Kuerten, S., Louzada, R. O., Rasbold, G. G., & McGlue, M. M. (2023). Source-to-sink controls on modern fluvial sands in the Pantanal back-bulge basin (Brazil). Sedimentologika, 1(1), 1–18. https://doi.org/10.57035/journals/sdk.2023.e11.1152

Louzada, R. O., Bergier, I., Roque, F. O., McGlue, M. M., Silva, A., & Assine, M. L. (2021). Avulsions drive ecosystem services and economic changes in the Brazilian Pantanal wetlands. Current Research in Environmental Sustainability, 3, 100057. https://doi.org/10.1016/j.crsust.2021.100057

Madeira, J., Bedidi, A., Cervelle, B., Pouget, M., & Flay, N. (1997). Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. International Journal of Remote Sensing, 18(13), 2835–2852. https://doi.org/10.1080/014311697217369

Manassero, M., Camilión, C., Poiré, D., Da Silva, M., & Ronco, A. (2008). Grain size analysis and clay mineral associations in bottom sediments from Paraná River Basin. Latin American Journal of Sedimentology and Basin Analysis, 15(2), 125–137.

Mathian, M., Bueno, G. T., Balan, E., Fritsch, E., Do Nascimento, N. R., Selo, M., & Allard, T. (2020). Kaolinite dating from Acrisol and Ferralsol: A new key to understanding the landscape evolution in NW Amazonia (Brazil). Geoderma, 370, 114354. https://doi.org/10.1016/j.geoderma.2020.114354

McGlue, M. M., Guerreiro, R. L., Bergier, I., Silva, A., Pupim, F. N., Oberc, V., & Assine, M. L. (2017). Holocene stratigraphic evolution of saline lakes in Nhecolândia, southern Pantanal wetlands (Brazil). Quaternary Research, 88(3), 472–490. https://doi.org/10.1017/qua.2017.57

McGlue, M. M., Silva, A., Assine, M. L., Stevaux, J. C., & Pupim, F. do N. (2015). Paleolimnology in the Pantanal: Using Lake Sediments to Track Quaternary Environmental Change in the World’s Largest Tropical Wetland. In I. Bergier & M. L. Assine (Eds.), Dynamics of the Pantanal Wetland in South America (p. 51–81). Springer International Publishing. https://doi.org/10.1007/698_2015_350

McGlue, M. M., Smith, P. H., Zani, H., Silva, A., Carrapa, B., Cohen, A. S., & Pepper, M. B. (2016). An integrated sedimentary systems analysis of the Río Bermejo (Argentina): Megafan character in the overfilled Southern Chaco Foreland basin. Journal of Sedimentary Research, 86(12), 1359–1377. https://doi.org/10.2110/jsr.2016.82

Moore, D. M., & Reynolds, R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. (p. 332). Springer.

Nascimento, A. F., Furquim, S. A. C., Graham, R. C., Beirigo, R. M., Oliveira Junior, J. C., Couto, E. G., & Vidal-Torrado, P. (2015). Pedogenesis in a Pleistocene fluvial system of the Northern Pantanal — Brazil. Geoderma, 255–256, 58–72. https://doi.org/10.1016/j.geoderma.2015.04.025

Nesbitt, H. W., & Wilson, R. E. (1992). Recent chemical weathering of basalts. American Journal of Science, 292(10), 740–777. https://doi.org/10.2475/ajs.292.10.740

Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0

Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3

Novello, V. F., Cruz, F. W., Vuille, M., Stríkis, N. M., Edwards, R. L., Cheng, H., Emerick, S., de Paula, M. S., Li, X., Barreto, E. de S., Karmann, I., & Santos, R. V. (2017). A high-resolution history of the South American Monsoon from Last Glacial Maximum to the Holocene. Scientific Reports, 7(1), 44267. https://doi.org/10.1038/srep44267

Ojanuga, A. G. (1973). Weathering of Biotite in Soils of a Humid Tropical Climate. Soil Science Society of America Journal, 37(4), 644–646. https://doi.org/10.2136/sssaj1973.03615995003700040046x

Oliva, P., Viers, J., Dupré, B., Fortuné, J. P., Martin, F., Braun, J. J., Nahon, D., & Robain, H. (1999). The effect of organic matter on chemical weathering: study of a small tropical watershed: nsimi-zoétélé site, cameroon. Geochimica et Cosmochimica Acta, 63(23), 4013–4035. https://doi.org/10.1016/S0016-7037(99)00306-3

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Orué, D. (1996). Síntese da geologia do Paraguai oriental, com ênfase para o magmatismo alcalino associado [Thesis, Universidade de São Paulo]. https://doi.org/10.11606/D.44.1996.tde-24092015-163805

Parker, A. (1970). An Index of Weathering for Silicate Rocks. Geological Magazine, 107(6), 501–504. https://doi.org/10.1017/S0016756800058581

Potter, P. E. (1994). Modern sands of South America: composition, provenance and global significance. Geologische Rundschau, 83(1), 212–232. https://doi.org/10.1007/BF00211904

Price, J. R. & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202: 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001

Quartero, E. M., Leier, A. L., Bentley, L. R., & Glombick, P. (2015). Basin-scale stratigraphic architecture and potential Paleocene distributive fluvial systems of the Cordilleran Foreland Basin, Alberta, Canada. Sedimentary Geology, 316, 26–38. https://doi.org/10.1016/j.sedgeo.2014.11.005

RadamBrasil, P. (1982). Folha SE.21 – Corumbá e parte da Folha SE-20; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Projeto RADAMBRASIL: Levantamento de recursos naturais, 27. (p. 552). Ministério das Minas e Energia. Secretaria Geral: Rio de Janeiro.

Reatto, A., Bruand, A., de Souza Martins, E., Muller, F., da Silva, E. M., Carvalho, O. A. de, & Brossard, M. (2008). Variation of the kaolinite and gibbsite content at regional and local scale in Latosols of the Brazilian Central Plateau. Comptes Rendus Geoscience, 340(11), 741–748. https://doi.org/10.1016/j.crte.2008.07.006

Repasch, M., Scheingross, J. S., Hovius, N., Lupker, M., Wittmann, H., Haghipour, N., Gröcke, D. R., Orfeo, O., Eglinton, T. I., & Sachse, D. (2021). Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nature Geoscience, 14(11), 842–848. https://doi.org/10.1038/s41561-021-00845-7

Repasch, M., Wittmann, H., Scheingross, J. S., Sachse, D., Szupiany, R., Orfeo, O., Fuchs, M., & Hovius, N. (2020). Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be. Journal of Geophysical Research: Earth Surface, 125(7), e2019JF005419. https://doi.org/10.1029/2019JF005419

Righi, D., & Meunier, A. (1995). Origin of Clays by Rock Weathering and Soil Formation. In B. Velde (Ed.), Origin and Mineralogy of Clays: Clays and the Environment (p. 43–161). Springer. https://doi.org/10.1007/978-3-662-12648-6_3

Rivadeneyra-Vera, C., Bianchi, M., Assumpção, M., Cedraz, V., Julià, J., Rodríguez, M., Sánchez, L., Sánchez, G., Lopez-Murua, L., Fernandez, G., Fugarazzo, R., & Team, T. “3-B.” P. (2019). An Updated Crustal Thickness Map of Central South America Based on Receiver Function Measurements in the Region of the Chaco, Pantanal, and Paraná Basins, Southwestern Brazil. Journal of Geophysical Research: Solid Earth, 124(8), 8491–8505. https://doi.org/10.1029/2018JB016811

Rizzotto, G., & Hartmann, L. (2012). Geological and geochemical evolution of the Trincheira Complex, a Mesoproterozoic ophiolite in the southwestern Amazon craton, Brazil. Lithos, 148, 277–295. https://doi.org/10.1016/j.lithos.2012.05.027

Ronco, A., Camilión, C., & Manassero, M. (2001). Geochemistry of heavy metals in bottom sediments from streams of the western coast of the rio de la plata estuary, Argentina. Environmental Geochemistry and Health, 23(2), 89–103. https://doi.org/10.1023/A:1010956531415

Selvaraj, K., & Chen, C. A. (2006). Moderate Chemical Weathering of Subtropical Taiwan: Constraints from Solid‐Phase Geochemistry of Sediments and Sedimentary Rocks. The Journal of Geology, 114(1), 101–116. https://doi.org/10.1086/498102

SERGEOMIN. (2005). Geologia, Departamento de Santa Cruz (Ae-MAP-0005-B) Escala 1:1,000,000. Servicio Geológico Técnico de Minas (SERGEOTECMIN), La Paz.

Setti, M., López-Galindo, A., Padoan, M., & Garzanti, E. (2014). Clay mineralogy in southern Africa river muds. Clay Minerals, 49(5), 717–733. https://doi.org/10.1180/claymin.2014.049.5.08

Shover, E. F. (1963). Clay-Mineral Environmental Relationships in Cisco (U. Penn.) Clays and Shales, North Central Texas. Clays and Clay Minerals, 12(1), 431–443. https://doi.org/10.1346/CCMN.1963.0120138

Singer, A. (1980). The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Science Reviews, 15(4), 303–326. https://doi.org/10.1016/0012-8252(80)90113-0

Souza, E. B. de, Pott, A., Wittmann, F., Parolin, P., Markus-Michalczyk, H., Bueno, M. L., & Damasceno-Junior, G. A. (2021). Composition and Distribution of Woody and Palm Vegetation in the Pantanal Wetland. In G. A. Damasceno-Junior & A. Pott (Eds.), Flora and Vegetation of the Pantanal Wetland (p. 443–469). Springer International Publishing. https://doi.org/10.1007/978-3-030-83375-6_9

Souza, E. S. de, Fernandes, A. R., De Souza Braz, A. M., Oliveira, F. J. de, Alleoni, L. R. F., & Campos, M. C. C. (2018). Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. SOIL, 4(3), 195–212. https://doi.org/10.5194/soil-4-195-2018

Spinzi, Á. M., & Ramírez, H. M. (2014). Mapa Geológico del Paraguay, Escala 1:1.000.000. Viceministerio de Minas y Energía, Asunción.

Stallard, R. F., Koehnken, L., & Johnsson, M. J. (1991). Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia. Geoderma, 51(1), 133–165. https://doi.org/10.1016/0016-7061(91)90069-6

Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262

Tineo, D. E., Comerio, M. A., Vigiani, L. H., Kürten Moreno, G. S., & Poiré, D. G. (2022). Tectonic and paleoclimatic controls on the composition of inland wetland deposits, Chaco foreland basin, Central Andes. Journal of Sedimentary Research, 92(2), 112–133. https://doi.org/10.2110/jsr.2021.033

Truckenbrodt, W., Kotschoubey, B., & Schellmann, W. (1991). Composition and origin of the clay cover on North Brazilian laterites. Geologische Rundschau, 80(3), 591–610. https://doi.org/10.1007/BF01803688

USGS. (1996). Global 30 Arc-Second Elevation (GTOPO30). https://doi.org/10.5066/F7DF6PQS

Ussami, N., Shiraiwa, S., & Dominguez, J. M. L. (1999). Basement reactivation in a sub-Andean foreland flexural bulge: The Pantanal wetland, SW Brazil. Tectonics, 18(1), 25–39. https://doi.org/10.1029/1998TC900004

Vanderaveroet, P., Bout-Roumazeilles, V., Fagel, N., Chamley, H., & Deconinck, J. F. (2000). Significance of random illite-vermiculite mixed layers in Pleistocene sediments of the northwestern Atlantic Ocean. Clay Minerals, 35(4), 679–691. https://doi.org/10.1180/000985500547133

Vasconcelos, B. R., Ruiz, A. S., & Matos, J. B. de. (2015). Polyphase deformation and metamorphism of the Cuiabá group in the Poconé region (MT), Paraguay Fold and Thrust Belt: kinematic and tectonic implications. Brazilian Journal of Geology, 45(1), 51–63. https://doi.org/10.1590/23174889201500010004

Velde, B. B., & Meunier, A. (2008). The Origin of Clay Minerals in Soils and Weathered Rocks (p. 406). Springer Science & Business Media. https://doi.org/10.1007/978-3-540-75634-7

Verdin, K. L. (2017). Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database. In Data Series (No. 1053) (p. 16). U.S. Geological Survey. https://doi.org/10.3133/ds1053

Viers, J., Dupré, B., Braun, J.-J., Deberdt, S., Angeletti, B., Ngoupayou, J. N., & Michard, A. (2000). Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments. Chemical Geology, 169(1), 211–241. https://doi.org/10.1016/S0009-2541(00)00298-9

Wang, H., Liu, Z., Sathiamurthy, E., Colin, C., Li, J., & Zhao, Y. (2011). Chemical weathering in Malay Peninsula and North Borneo: Clay mineralogy and element geochemistry of river surface sediments. Science China Earth Sciences, 54(2), 272–282. https://doi.org/10.1007/s11430-010-4158-x

Warr, L. N. (2022). Earth’s clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Science Reviews, 234, 104198. https://doi.org/10.1016/j.earscirev.2022.104198

Warren, L., Quaglio, F., Simoes, M., Freitas, B., Assine, M., & Riccomini, C. (2015). Underneath the Pantanal Wetland: A Deep-Time History of Gondwana Assembly, Climate Change, and the Dawn of Metazoan Life. In Handbook of Environmental Chemistry (p. 1-21). https://doi.org/10.1007/698_2014_326

Weissmann, G. S., Hartley, A. J., Scuderi, L. A., Nichols, G. J., Owen, A., Wright, S., Felicia, A. L., Holland, F., & Anaya, F. M. L. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187–219. https://doi.org/10.1016/j.geomorph.2015.09.005

Wilson, M. D. (1992). Inherited Grain-Rimming Clays in Sandstones from Eolian and Shelf Environments: Their Origin and Control on Reservoir Properties. In D. W. Houseknecht & E. D. Pittman (Eds.), Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (Vol. 47, p. 209-225). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.92.47.0209

Wilson, M. J. (1999). The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34(1), 7–25. https://doi.org/10.1180/000985599545957

Yuan, H., & Bish, D. L. (2010). NEWMOD+, a new version of the NEWMOD program for interpreting X-ray powder diffraction patterns from interstratified clay minerals. Clays and Clay Minerals, 58(3), 318–326. https://doi.org/10.1346/CCMN.2010.0580303

Zani, H., Assine, M. L., & McGlue, M. M. (2012). Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology, 161–162, 82–92. https://doi.org/10.1016/j.geomorph.2012.04.003

Published

21-06-2024

Section

Publications

Categories

How to Cite

Lo, E. L., McGlue, M. M., Matocha, C. J., Silva, A., Rasbold, G. G., Kuerten, S., Louzada, R. O., & Haller, K. C. (2024). Pantanal Basin river muds from source to sink: compositional changes in a tropical back-bulge depozone. Sedimentologika, 2(1). https://doi.org/10.57035/journals/sdk.2024.e21.1342