Heterogeneous lithification across a legacy coastal slag bank: the creation of new sedimentary rock from anthropogenic material

Authors

  • Robin Hilderman School of Geographical and Earth Sciences, University of Glasgow, United Kingdom https://orcid.org/0000-0002-7256-4855
  • John MacDonald School of Geographical and Earth Sciences, University of Glasgow, United Kingdom https://orcid.org/0000-0002-8609-804X
  • Sammy Griffin School of Geographical and Earth Sciences, University of Glasgow, United Kingdom
  • Charlotte Slaymark School of Geographical and Earth Sciences, University of Glasgow, United Kingdom
  • Joshua Einsle School of Geographical and Earth Sciences, University of Glasgow, United Kingdom https://orcid.org/0000-0001-8263-8531
  • Andrew Monaghan School of Chemistry, University of Glasgow, United Kingdom

DOI:

https://doi.org/10.57035/journals/sdk.2024.e21.1318

Keywords:

Lithification, Calcite, Slag, Carbonation, Legacy waste

Abstract

Lithification of artificial ground comprising by-products of legacy iron and steel workings presents a range of opportunities including atmospheric carbon dioxide (CO2) storage. The natural environmental processes altering these waste sites can also pose challenges such as ecotoxic metal leaching, and so it is important to characterise these largely undocumented anthropogenically-derived rocks. This study documents the lithification mechanisms, as well as mineralogical and geochemical characteristics across a legacy coastal iron and steel slag deposit (in Warton, England). X-Ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis of the slag deposit, as well as thermogravimetric analysis (TGA) of the cream-coloured material covering the deposit, shows lithification both on the top surface and the seaward side above the mean high-water mark (MHWM), which is the result of carbonate mineralisation. This process is driven by water weathering slag minerals (gehlenite, åkermanite, and pseudowollastonite), which release calcium (Ca). Ingassed and hydroxylated atmospheric CO2 reacts with the leached Ca to form calcite that is slightly to strongly depleted in 13C (δ13C values: -6.4 ‰ to -22.7 ‰), following partial dissolved inorganic carbonate (DIC) equilibrium. Calcium-silicate-hydrate (CSH) precipitation was responsible for lithifying the deposit where more frequent and abundant seawater washing prevents subsequent slag mineral dissolution and carbonate precipitation. This work shows that legacy iron and steel slag deposits are prone to lithification, particularly in coastal settings. This lithification can draw down atmospheric CO2 and has the potential to slow the release of toxic metals from CSH precipitation, enhancing the possibility for repurposing legacy industrial waste for CO2 storage and coastal defence applications.

Downloads

Download data is not yet available.

References

Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1), 300–305. https://doi.org/10.1016/j.jhazmat.2008.09.105

Béarat, H., McKelvy, M. J., Chizmeshya, A. V. G., Gormley, D., Nunez, R., Carpenter, R. W., Squires, K., & Wolf, G. H. (2006). Carbon Sequestration via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation. Environmental Science & Technology, 40(15), 4802–4808. https://doi.org/10.1021/es0523340

Bianco, L., & Porisiensi, S. (2016). Economia circolare e Sostenibilità. 10.

Branca, T. A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R., & Rosendahl, S. (2020). Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals, 10(3), Article 3. https://doi.org/10.3390/met10030345

Brown, P. W., Hooton, R. D., & Clark, B. A. (2003). The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. Cement and Concrete Composites, 25(8), 939–945. https://doi.org/10.1016/S0958-9465(03)00152-5

Chiang, P.-C., & Pan, S.-Y. (2017). Carbon dioxide mineralization and utilization. Springer.

Chukwuma, J. S., Pullin, H., & Renforth, P. (2021). Assessing the carbon capture capacity of South Wales’ legacy iron and steel slag. Minerals Engineering, 173, 107232. https://doi.org/10.1016/j.mineng.2021.107232

Cooper, A. H., Brown, T. J., Price, S. J., Ford, J. R., & Waters, C. N. (2018). Humans are the most significant global geomorphological driving force of the 21st century. The Anthropocene Review, 5(3), 222–229. https://doi.org/10.1177/2053019618800234

LCC. (2006). Lancashire Historic Town Survey Programme: Preston with Walton-le-Dale and Penwortham, Historic Town Assessment Report.

De Windt, L., Chaurand, P., & Rose, J. (2011). Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 31(2), 225–235. https://doi.org/10.1016/j.wasman.2010.05.018

Dietzel, M., Usdowski, E., & Hoefs, J. (1992). Chemical and 13C/12C- and 18O/16O-isotope evolution of alkaline drainage waters and the precipitation of calcite. Applied Geochemistry, 7(2), 177–184. https://doi.org/10.1016/0883-2927(92)90035-2

Doucet, F. J. (2010). Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. Minerals Engineering, 23(3), 262–269. https://doi.org/10.1016/j.mineng.2009.09.006

Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.-J., & Zevenhoven, R. (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33(9), 1461–1467.

Engström, F., Adolfsson, D., Samuelsson, C., Sandström, Å., & Björkman, B. (2013). A study of the solubility of pure slag minerals. Minerals Engineering, 41, 46–52. https://doi.org/10.1016/j.mineng.2012.10.004

Falk, E. S., Guo, W., Paukert, A. N., Matter, J. M., Mervine, E. M., & Kelemen, P. B. (2016). Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements. Geochimica et Cosmochimica Acta, 192, 1–28. https://doi.org/10.1016/j.gca.2016.06.026

Gomes, H. I., Mayes, W. M., Rogerson, M., Stewart, D. I., & Burke, I. T. (2016). Alkaline residues and the environment: A review of impacts, management practices and opportunities. Journal of Cleaner Production, 112, 3571–3582. https://doi.org/10.1016/j.jclepro.2015.09.111

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L., Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T., & Le Bail, A. (2012). Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Research, 40(D1), D420–D427. https://doi.org/10.1093/nar/gkr900

Gregor, C. B., Garrels, R. M., Mackenzie, F. T., & Maynard, J. B. (1988). Chemical Cycles in the Evolution of the Earth. Wiley New York.

Habib, A., Bhatti, H. N., & Iqbal, M. (2020). Metallurgical Processing Strategies for Metals Recovery from Industrial Slags. Zeitschrift Für Physikalische Chemie, 234(2), 201–231. https://doi.org/10.1515/zpch-2019-0001

Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cement and Concrete Research, 41(9), 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002

Harwood, T. R., & Scott, R. (1999). A report on Spartina anglica control Grange-over-Sands 1998-1999 for South Lakeland District Council.

Hobson, A. J., Stewart, D. I., Bray, A. W., Mortimer, R. J. G., Mayes, W. M., Rogerson, M., & Burke, I. T. (2017). Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study. Environmental Science & Technology, 51(14), 7823–7830. https://doi.org/10.1021/acs.est.7b00874

Huijgen, W. J. J., & Comans, R. N. J. (2006). Carbonation of Steel Slag for CO 2 Sequestration: Leaching of Products and Reaction Mechanisms. Environmental Science & Technology, 40(8), 2790–2796. https://doi.org/10.1021/es052534b

Huijgen, W. J. J., Witkamp, G.-J., & Comans, R. N. J. (2005). Mineral CO 2 Sequestration by Steel Slag Carbonation. Environmental Science & Technology, 39(24), 9676–9682. https://doi.org/10.1021/es050795f

Irassar, E. F., Bonavetti, V. L., & González, M. (2003). Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cement and Concrete Research, 33(1), 31–41. https://doi.org/10.1016/S0008-8846(02)00914-6

Jiang, N.-J., Du, Y.-J., & Liu, K. (2018). Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack. Applied Clay Science, 161, 70–75. https://doi.org/10.1016/j.clay.2018.04.014

Lee, A. R. (1974). Blastfurnace and steel slag: Production, properties and uses.

Lizarazo-Marriaga, J., Claisse, P., & Ganjian, E. (2011). Effect of steel slag and portland cement in the rate of hydration and strength of blast furnace slag pastes. Journal of Materials in Civil Engineering, 23(2), 153–160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000149

MacDonald, J. M., Brolly, C. V., Slaymark, C., Spruženiece, L., Wilson, C., & Hilderman, R. (2023a). The mechanisms and drivers of lithification in slag-dominated artificial ground. The Depositional Record, 9(4), 810-819. https://doi.org/10.1002/dep2.230

MacDonald, J. M., Khudhur, F. W. K., Carter, R., Plomer, B., Wilson, C., & Slaymark, C. (2023b). The mechanisms and microstructures of passive atmospheric CO2 mineralisation with slag at ambient conditions. Applied Geochemistry, 152, 105649. https://doi.org/10.1016/j.apgeochem.2023.105649

Mayes, W. M., Riley, A. L., Gomes, H. I., Brabham, P., Hamlyn, J., Pullin, H., & Renforth, P. (2018). Atmospheric CO2 Sequestration in Iron and Steel Slag: Consett, County Durham, United Kingdom. Environmental Science & Technology, 52(14), 7892–7900. https://doi.org/10.1021/acs.est.8b01883

McGrath, P. F., & Hooton, R. D. (1997). Influence of Binder Composition on Chloride Penetration Resistance of Concrete. Special Publication, 170, 331–348. https://doi.org/10.14359/6829

Mehta, P. K. (1983). Mechanism of sulfate attack on portland cement concrete—Another look. Cement and Concrete Research, 13(3), 401–406. https://doi.org/10.1016/0008-8846(83)90040-6

Miki, T., Futatsuka, T., Shitogiden, K., Nagasaka, T., & Hino, M. (2004). Dissolution Behavior of Environmentally Regulated Elements from Steelmaking Slag into Seawater. ISIJ International, 44(4), 762–769. https://doi.org/10.2355/isijinternational.44.762

Pan, S.-Y., Chang, E., & Chiang, P.-C. (2012). CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. Aerosol and Air Quality Research, 12(5), 770–791.

Pane, I., & Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 35(6), 1155–1164. https://doi.org/10.1016/j.cemconres.2004.10.027

Piatak, N. M., & Ettler, V. (2021). Introduction: Metallurgical Slags – Environmental Liability or Valuable Resource? https://doi.org/10.1039/9781839164576-00001

Pranzini, E., & Williams, A. T. (2013). Coastal erosion and protection in Europe. Routledge London, UK.

Price, S. J., Ford, J. R., Cooper, A. H., & Neal, C. (2011). Humans as major geological and geomorphological agents in the Anthropocene: The significance of artificial ground in Great Britain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 1056–1084. https://doi.org/10.1098/rsta.2010.0296

Pullin, H., Bray, A. W., Burke, I. T., Muir, D. D., Sapsford, D. J., Mayes, W. M., & Renforth, P. (2019). Atmospheric Carbon Capture Performance of Legacy Iron and Steel Waste. Environmental Science & Technology, 53(16), 9502–9511. https://doi.org/10.1021/acs.est.9b01265

Ragipani, R., Bhattacharya, S., & Suresh, A. K. (2019). Kinetics of steel slag dissolution: From experiments to modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2224), 20180830. https://doi.org/10.1098/rspa.2018.0830

Renforth, P. (2019). The negative emission potential of alkaline materials. Nature Communications, 10(1), 1401. https://doi.org/10.1038/s41467-019-09475-5

Renforth, P., Manning, D. A. C., & Lopez-Capel, E. (2009). Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Applied Geochemistry, 24(9), 1757–1764. https://doi.org/10.1016/j.apgeochem.2009.05.005

Renforth, P., Washbourne, C.-L., Taylder, J., & Manning, D. A. C. (2011). Silicate Production and Availability for Mineral Carbonation. Environmental Science & Technology, 45(6), 2035–2041. https://doi.org/10.1021/es103241w

Riden, P., & Owen, J. G. (1995). British Blast Furnace Statistics, 1790-1980. Merton Priory.

Riley, A. L., MacDonald, J. M., Burke, I. T., Renforth, P., Jarvis, A. P., Hudson-Edwards, K. A., McKie, J., & Mayes, W. M. (2020). Legacy iron and steel wastes in the UK: Extent, resource potential, and management futures. Journal of Geochemical Exploration, 219, 106630. https://doi.org/10.1016/j.gexplo.2020.106630

Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. (2014). A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews, 43(23), 8049–8080. https://doi.org/10.1039/C4CS00035H

Scott, P. W., Critchley, S. R., & Wilkinson, F. C. F. (1986). The chemistry and mineralogy of some granulated and pelletized blastfurnace slags. Mineralogical Magazine, 50(355), 141–147. https://doi.org/10.1180/minmag.1986.050.355.19

Shi, C., Wang, D., & Behnood, A. (2012). Review of Thaumasite Sulfate Attack on Cement Mortar and Concrete. Journal of Materials in Civil Engineering, 24(12), 1450–1460. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000530

Skelcher, G. (2014). Arnside & Silverdale Area of Outstanding Natural Beauty–Special Qualities Report. Arnside & Silverdale AONB.

Tian, B., & Cohen, M. D. (2000). Does gypsum formation during sulfate attack on concrete lead to expansion? Cement and Concrete Research, 30(1), 117–123. https://doi.org/10.1016/S0008-8846(99)00211-2

USGS. (2023). Iron and Steel Slag. Mineral Commodity Summaries.

Wilkinson, B. H. (2005). Humans as geologic agents: A deep-time perspective. Geology, 33(3), 161. https://doi.org/10.1130/G21108.1

Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16, 791–801. https://doi.org/10.1016/j.proenv.2012.10.108

Zhang, T., Yu, Q., Wei, J., Li, J., & Zhang, P. (2011). Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resources, Conservation and Recycling, 56(1), 48–55.

Diagram showing the mechanism of lithification of slag-dominated artificial ground.

Published

13-06-2024 — Updated on 18-06-2024

Section

Publications

Categories

How to Cite

Hilderman, R., MacDonald, J., Griffin, S., Slaymark, C., Einsle, J., & Monaghan, A. (2024). Heterogeneous lithification across a legacy coastal slag bank: the creation of new sedimentary rock from anthropogenic material. Sedimentologika, 2(1). https://doi.org/10.57035/journals/sdk.2024.e21.1318