Contrasting sedimentary and long-lasting geochemical imprints of seismic shaking in a small, groundwater-fed lake basin (Klopeiner See, Eastern European Alps)

Authors

  • Christoph Daxer Sedimentary Geology Research Group, Institute of Geology, University of Innsbruck (Austria) https://orcid.org/0000-0003-1276-4596
  • Katleen Wils Sedimentary Geology Research Group, Institute of Geology, University of Innsbruck (Austria) and Renard Centre of Marine Geology, Department of Geology, Ghent University (Belgium) https://orcid.org/0000-0003-4738-2002
  • Arne Ramisch Sedimentary Geology Research Group, Institute of Geology, University of Innsbruck (Austria) https://orcid.org/0000-0002-0173-4829
  • Michael Strasser Sedimentary Geology Research Group, Institute of Geology, University of Innsbruck (Austria) https://orcid.org/0000-0003-3991-2405
  • Jasper Moernaut Sedimentary Geology Research Group, Institute of Geology, University of Innsbruck (Austria) https://orcid.org/0000-0003-3164-4274

DOI:

https://doi.org/10.57035/journals/sdk.2024.e21.1296

Keywords:

Earthquake, Lake sediment, Paleoseismicity, Eastern Alps, Sediment geochemistry

Abstract

In slowly deforming tectonic settings (e.g., European Alps), large earthquakes occur too infrequently to be adequately represented in instrumental and historical records. This leads to uncertainties and inaccuracies of seismic hazard estimations. To extend the seismic record, lacustrine paleoseismologists usually resort to the sedimentary archive of large lakes where earthquakes can be recorded as mass-transport deposits and associated turbidites. The imprint of seismic shaking is generally more subtle and poorly understood in small lakes (<2 km2) with small catchments and therefore such sediment-starved basins are often neglected for paleoseismology. However, these basins might harbour additional information about past earthquakes, thus constituting a valuable supplement to other paleoseismic data. Here, we present the 18 ka-long paleoseismic record of Klopeiner See, a small and rather shallow groundwater-fed lake in the Eastern European Alps. Reflection seismic profiles and sediment cores reveal that several large earthquakes led to extensive mass-wasting in early Late-Glacial times when sedimentation rates were very high (~10 mm/yr). In the Early and Middle Holocene, low sedimentation rates (~0.2-0.5 mm/yr) may have decreased the lake’s sensitivity for recording seismic shaking and no imprints were found for paleo-earthquakes inferred from other records in the region. A short succession of turbidites at ca. 3160 cal BP suggests a burst of strong paleoseismic activity. This may have caused permanent modifications of inflowing ground water systems, archived as a permanent shift in the geochemical signal of the sediment. Such a period of enhanced paleoseismic activity was also inferred from the nearby Lake Wörthersee, but it remains unclear whether these represent the same earthquakes or migrating paleoseismicity. This study highlights the unexpected potential and peculiarities of paleoseismology on small ground-water fed lakes.

Downloads

Download data is not yet available.

References

Álvarez-Rubio, S., & Fäh, D. (2009). The BOXER method applied to the determination of earthquake parameters from macroseismic data - Verification of the calibration of historical earthquakes in the Earthquake Catalogue of Switzerland (ECOS2009). Internal Report of the Swiss Seismological Service, ETH Zürich, 1–24. http://www.seismo.ethz.ch/static/ecos-09/Appendix/Appendix_E.pdf

Anselmetti, F. S., Ariztegui, D., De Batist, M., Catalina Gebhardt, A., Haberzettl, T., Niessen, F., Ohlendorf, C., & Zolitschka, B. (2009). Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike. Sedimentology, 56(4), 873–892. https://doi.org/10.1111/j.1365-3091.2008.01002.x

Archer, C., Noble, P., Rosen, M. R., Sagnotti, L., Florindo, F., Mensing, S., Piovesan, G., & Michetti, A. M. (2019). Lakes as paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy). Quaternary Science Reviews, 211, 186–207. https://doi.org/10.1016/j.quascirev.2019.03.004

Archer, D., Emerson, S., & Reimers, C. (1989). Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochimica et Cosmochimica Acta, 53(11), 2831-2845. https://doi.org/10.1016/0016-7037(89)90161-0

Atanackov, J., Jamšek Rupnik, P., Jež, J., Celarc, B., Novak, M., Milanič, B., Markelj, A., Bavec, M., & Kastelic, V. (2021). Database of Active Faults in Slovenia: Compiling a New Active Fault Database at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains. Frontiers in Earth Science, 9, 1–21. https://doi.org/10.3389/feart.2021.604388

Avşar, U., Hubert-Ferrari, A., De Batist, M., Lepoint, G., Schmidt, S., & Fagel, N. (2014). Seismically-triggered organic-rich layers in recent sediments from Göllüköy Lake (North Anatolian Fault, Turkey). Quaternary Science Reviews, 103, 67–80. https://doi.org/10.1016/j.quascirev.2014.08.020

Banjan, M., Christian, C., Pierre, S., Hervé, J., Manon, B., Francois, D., Anne-Lise, D., Jean-Philippe, J., Bernard, F., Emmanuel, M., Findling, N., Philippe, A., Julien, D., Vincent, B., Sylvain, C., & Erwan, M. (2023). Did the Younger Dryas to Holocene climate transition favour high seismicity rates in the north-western Alps? Sedimentology, 70(2), 538–568. https://doi.org/10.1111/sed.13050

Barfal, S. S., Das, M. M., Joshi, M., Joshi, R., Kumar, K., Kumar, D., & Rai, Y. K. (2022). Response of water springs towards an earthquake: A case study from Sikkim Himalaya. Journal of Applied Geophysics, 206, 104792. https://doi.org/10.1016/j.jappgeo.2022.104792

Baroň, I., Plan, L., Grasemann, B., Melichar, R., Mitrović-Woodell, I., Rowberry, M., & Scholz, D. (2022). Three large prehistoric earthquakes in the Eastern Alps evidenced by cave rupture and speleothem damage. Geomorphology, 408. https://doi.org/10.1016/j.geomorph.2022.108242

Baster, I., Girardclos, S., Pugin, A., & Wildi, W. (2003). High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland). Eclogae Geologicae Helveticae, 96(Supplement 1), S11–S20. https://doi.org/0012-9402/03/01S011-10

Becker, A., Davenport, C. A., & Giardini, D. (2002). Palaeoseismicity studies on end-Pleistocene and Holocene lake deposits around Basle, Switzerland. Geophysical Journal International, 149(3), 659–678. https://doi.org/10.1046/j.1365-246X.2002.01678.x

Bigham, K. T., Rowden, A. A., Leduc, D., & Bowden, D. A. (2021). Review and syntheses: Impacts of turbidity flows on deep-sea benthic communities. Biogeosciences, 18(5), 1893–1908. https://doi.org/10.5194/bg-18-1893-2021

Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618

Blott, S. J., & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11), 1237–1248. https://doi.org/10.1002/esp.261

Borasi, L., Cane, D., Fegerl, M., Fink, G., Fresner, R., Harum, T., Leis, A., Maffiotti, A., Provenzale, A., Reszler, C., Santner, G., Schulz, L., Siligardi, M., von Hardenberg, J., Wahl, B., Wolf, T., & Zennaro, B. (2013). Climate Change Impacts on Alpine Lakes. SILMAS Project-WP4: final guideline.

Bortenschlager, S. (1984). Beiträge zur Vegetationsgeschichte Tirols I. Inneres Ötztal und unteres Inntal. Berichte Des Naturwissenschaftlich-Medizinischen Vereins Innsbruck, 71, 19–56.

Brancelj, A., Žibrat, U., Mezek, T., Brancelj, I. R., & Dumont, H. J. (2012). Consecutive earthquakes temporarily restructured the zooplankton community in an Alpine Lake. Annales de Limnologie, 48(1), 113–123. https://doi.org/10.1051/limn/2012001

Brooks, G. R. (2018). Deglacial record of palaeoearthquakes interpreted from mass transport deposits at three lakes near Rouyn-Noranda, north-western Quebec, Canada. Sedimentology, 65(7), 2439–2467. https://doi.org/10.1111/sed.12473

Brückl, E., Behm, M., Decker, K., Grad, M., Guterch, A., Keller, G. R., & Thybo, H. (2010). Crustal structure and active tectonics in the Eastern Alps. Tectonics, 29(2). https://doi.org/10.1029/2009TC002491

Bundesministerium für Land- und Forstwirtschaft; Umwelt und Wasserwirtschaft. (2013). Hydrografisches Jahrbuch von Österreich 2013. https://wasser.umweltbundesamt.at/hydjb/historic/historic.xhtml#

Cai, W. J., Luther, G. W., Cornwell, J. C., & Giblin, A. E. (2010). Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments in lake champlain. Aquatic Geochemistry, 16(3), 421–446. https://doi.org/10.1007/s10498-010-9097-9

Caracciolo, C. H., Camassi, R., & Castelli, V. (2015). l terremoto del 25 gennaio 1348 (Alpi orientali). Internal report, Istituto Nazionale di Geofisica e Vulcanologia, 12 pp. https://emidius.mi.ingv.it/ASMI/study/CARAL015

Caracciolo, C. H., Slejko, D., Camassi, R., & Castelli, V. (2021). The eastern alps earthquake of 25 january 1348: New insights from old sources. Bulletin of Geophysics and Oceanography, 62(3), 335–364. https://doi.org/10.4430/bgo00364

Croudace, I. W., & Rothwell, R. G. (2015). Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences. In Developments in Paleoenvironmental Research (Vol. 17). https://doi.org/10.1007/978-94-017-9849-5

Daxer, C., Huang, J.-J. S., Weginger, S., Hilbe, M., Strasser, M., & Moernaut, J. (2022a). Validation of seismic hazard curves using a calibrated 14 ka lacustrine record in the Eastern Alps, Austria. Scientific Reports, 12(1), 19943. https://doi.org/10.1038/s41598-022-24487-w

Daxer, C., Moernaut, J., Taylor, T., Haas, J. N., & Strasser, M. (2018). Late Glacial and Holocene sedimentary infill of Lake Mondsee (Eastern Alps, Austria) and historical rockfall activity revealed by reflection seismics and sediment core analysis. Austrian Journal of Earth Sciences, 111(1), 111–134. https://doi.org/10.17738/ajes.2018.0008

Daxer, C., Ortler, M., Fabbri, S. C., Hilbe, M., Hajdas, I., Dubois, N., Piechl, T., Hammerl, C., Strasser, M., & Moernaut, J. (2022b). High-resolution calibration of seismically-induced lacustrine deposits with historical earthquake data in the Eastern Alps (Carinthia, Austria). Quaternary Science Reviews, 284, 107497. https://doi.org/10.1016/j.quascirev.2022.107497

de Geer, G. (1912). Geochronologie der letzten 12000 Jahre. Geologische Rundschau, 3(7), 457–471. https://doi.org/10.1007/BF01802565

Draxler, I. (1977). Pollenanalytische Untersuchungen von Mooren zur spät- und postglazialen Vegetationsgeschichte im Einzugsgebiet der Traun. Jahrbuch Der Geologischen Bundesanstalt, 120(1), 131–163.

Eder, N., & Neubauer, F. (2000). On the edge of the extruding wedge: Neogene kinematics and geomorphology along the southern Niedere Tauern, Eastern Alps. Eclogae Geologicae Helvetiae, 93(1), 81–92.

Escoffier, N., Perolo, P., Many, G., Pasche, N. T., & Perga, M.-E. (2023). Fine-scale dynamics of calcite precipitation in a large hardwater lake. Science of The Total Environment, 864(August 2022), 160699. https://doi.org/10.1016/j.scitotenv.2022.160699

Fabbri, S. C., Buechi, M. W., Horstmeyer, H., Hilbe, M., Hübscher, C., Schmelzbach, C., Weiss, B., & Anselmetti, F.S. (2018). A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier. Quaternary Science Reviews, 187, 62-79. https://doi.org/10.1016/j.quascirev.2018.03.010

Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., & Rossetti, F. (2004). Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 23(1). https://doi.org/10.1029/2002TC001488

Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., & Allmann, B. (2011). ECOS-09 earthquake catalogue of Switzerland release 2011 report and database. Public catalogue, 17. 4. 2011. Swiss Seismological Service ETH Zurich. Risk, 1–42.

Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d

Fritz, M., Herzschuh, U., Wetterich, S., Lantuit, H., De Pascale, G. P., Pollard, W. H., & Schirrmeister, L. (2012). Late glacial and Holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada). Quaternary Research (United States), 78(3), 549–560. https://doi.org/10.1016/j.yqres.2012.07.007

Gastineau, R., de Sigoyer, J., Sabatier, P., Fabbri, S. C., Anselmetti, F. S., Develle, A. L., Şahin, M., Gündüz, S., Niessen, F., & Gebhardt, A. C. (2021). Active Subaquatic Fault Segments in Lake Iznik Along the Middle Strand of the North Anatolian Fault, NW Turkey. Tectonics, 40(1), 1–22. https://doi.org/10.1029/2020TC006404

Girardclos, S., Schmidt, O. T., Sturm, M., Ariztegui, D., Pugin, A., & Anselmetti, F. S. (2007). The 1996 AD delta collapse and large turbidite in Lake Brienz. Marine Geology, 241(1–4), 137–154. https://doi.org/10.1016/j.margeo.2007.03.011

Gleirscher, P. (1996). Spätkeltische und frührömische Funde im Bereich der Gracarca am Klopeiner See (Unterkärnten). Arheološki Vestnik, 47, 229–238.

Gleirscher, P. (2009). Gräber keltischer Schwertkrieger vom Fuße der Gracarca (Kärnten). In Protohistoire Européenne (Issue 11).

Grünthal, G., Wahlström, R., & Stromeyer, D. (2013). The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). Journal of Seismology, 17(4), 1339–1344. https://doi.org/10.1007/s10950-013-9379-y

Gälman, V., Rydberg, J., Shchukarev, A., Sjöberg, S., Martínez-Cortizas, A., Bindler, R., & Renberg, I. (2009). The role of iron and sulfur in the visual appearance of lake sediment varves. Journal of Paleolimnology, 42, 141-153. https://doi.org/10.1007/s10933-008-9267-6

Hammerl, C. (1994). The earthquake of January 25th, 1348, discussion of sources. Historical Investigation of European Earthquakes. Materials of the CEC Project “Review of Historical Seismicity in Europe,” 2, 225–240.

Hammerl, C. (2017). Historical earthquake research in Austria. Geoscience Letters, 4(1), 7. https://doi.org/10.1186/s40562-017-0073-8

Harrison, B. K., Myrbo, A., Flood, B. E., & Bailey, J. V. (2018). Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles. Geobiology, 16(2), 190–202. https://doi.org/10.1111/gbi.12271

Heerema, C. J., Talling, P. J., Cartigny, M. J., Paull, C. K., Bailey, L., Simmons, S. M., Parsons, D. R., Clare, M. A., Gwiazda, R., Lundsten, E., Anderson, K., Maier, K. L., Xu, J. P., Sumner, E. J., Rosenberger, K., Gales, J., McGann, M., Carter, L., & Pope, E. (2020). What determines the downstream evolution of turbidity currents? Earth and Planetary Science Letters, 532. https://doi.org/10.1016/j.epsl.2019.116023

Hernández-Almeida, I., Grosjean, M., Tylmann, W., & Bonk, A. (2015). Chrysophyte cyst-inferred variability of warm season lake water chemistry and climate in northern Poland: training set and downcore reconstruction. Journal of Paleolimnology, 53(1), 123–138. https://doi.org/10.1007/s10933-014-9812-4

Hilbe, M., & Anselmetti, F. S. (2014). Signatures of slope failures and river-delta collapses in a perialpine lake (Lake Lucerne, Switzerland). Sedimentology, 61(7), 1883–1907. https://doi.org/10.1111/sed.12120

Howarth, J. D., Barth, N. C., Fitzsimons, S. J., Richards-Dinger, K., Clark, K. J., Biasi, G. P., Cochran, U. A., Langridge, R. M., Berryman, K. R., & Sutherland, R. (2021). Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nature Geoscience, 14(5), 314–320. https://doi.org/10.1038/s41561-021-00721-4

Howarth, J. D., Orpin, A. R., Kaneko, Y., Strachan, L. J., Nodder, S. D., Mountjoy, J. J., Barnes, P. M., Bostock, H. C., Holden, C., Jones, K., & Cağatay, M. N. (2016). Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nature Geoscience, 14, 167–167. https://doi.org/10.1038/s41561-021-00692-6

Huber, K., Weckström, K., Drescher-Schneider, R., Knoll, J., Schmidt, J., & Schmidt, R. (2010). Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). Journal of Paleolimnology, 43(1), 131–147. https://doi.org/10.1007/s10933-009-9322-y

Jackson, D. D., & Anderson, D. L. (1970). Physical mechanisms of seismic-wave attenuation. Reviews of Geophysics, 8(1), 1. https://doi.org/10.1029/RG008i001p00001

Jakobsson, M., Björck, S., O’Regan, M., Flodén, T., Greenwood, S. L., Swärd, H., Lif, A., Ampel, L., Koyi, H., & Skelton, A. (2014). Major earthquake at the Pleistocene-Holocene transition in Lake Vättern, Southern Sweden. Geology, 42(5), 379–382. https://doi.org/10.1130/G35499.1

Kahler, F. (1962). Geologische Karte der Umgebung von Klagenfurt 1:50000. Geologische Bundesanstalt.

Kärntner Institut für Seenforschung (2021). Seenbericht Klopeiner See. Kärntner Seen - Bericht. https://kis.ktn.gv.at/seen/kaerntner-seen?seeid=19&berichtjahr=2021

Kastelic, V., Vrabec, M., Cunningham, D., & Gosar, A. (2008). Neo-Alpine structural evolution and present-day tectonic activity of the eastern Southern Alps: The case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30(8), 963–975. https://doi.org/10.1016/j.jsg.2008.03.009

Khan, H., Laas, A., Marcé, R., Sepp, M., & Obrador, B. (2021). Eutrophication and geochemistry drive pelagic calcite precipitation in lakes. Water (Switzerland), 13(5), 1–15. https://doi.org/10.3390/w13050597

Kienel, U., Dulski, P., Ott, F., Lorenz, S., & Brauer, A. (2013). Recently induced anoxia leading to the preservation of seasonal laminae in two NE-German lakes. Journal of Paleolimnology, 50(4), 535–544. https://doi.org/10.1007/s10933-013-9745-3

Kremer, K., Gassner-Stamm, G., Grolimund, R., Wirth, S. B., Strasser, M., & Fäh, D. (2020). A database of potential paleoseismic evidence in Switzerland. Journal of Seismology, 24(2), 247–262. https://doi.org/10.1007/s10950-020-09908-5

Kremer, K., Simpson, G., & Girardclos, S. (2012). Giant Lake Geneva tsunami in AD 563. Nature Geoscience, 5(11), 756–757. https://doi.org/10.1038/ngeo1618

Kremer, K., Wirth, S. B., Reusch, A., Fäh, D., Bellwald, B., Anselmetti, F. S., Girardclos, S., & Strasser, M. (2017). Lake-sediment based paleoseismology: Limitations and perspectives from the Swiss Alps. Quaternary Science Reviews, 168, 1–18. https://doi.org/10.1016/j.quascirev.2017.04.026

Landgraf, A., KüBler, S., Hintersberger, E., & Stein, S. (2017). Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents. Geological Society Special Publication, 432(1), 1–12. https://doi.org/10.1144/SP432.13

Lenhardt, W. A. (2007). Earthquake-Triggered Landslides in Austria-Dobratsch Revisited. Jahrbuch Der Geologischen Bundesanstalt, 147(1+2), 193–199. www.geologie.ac.at

Lenhardt, W. A., Freudenthaler, C., Lippitsch, R., & Fiegweil, E. (2007). Focal-depth distributions in the Austrian Eastern Alps based on macroseismic data. Austrian Journal of Earth Sciences, 100, 66–79.

Manga, M., & Wang, C.-Y. (2015). Earthquake Hydrology. In Treatise on Geophysics (Vol. 4, pp. 305–328). Elsevier. https://doi.org/10.1016/B978-0-444-53802-4.00082-8

Messiner, H., & Windisch, H. (2008). Der Klopeiner See – Eigenschaften und Dynamik. Ein Beitrag zur Kenntnis dieses Sees. Carinthia II, 198(118), 501–542.

Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F. A., Azuma, T., Clague, J., Comerci, V., Gürpinar, A., McCalpin, J., Mohammadioun, B., Mörner, N. A., Ota, Y., & Roghozin, E. (2007). Environmental Seismic Intensity Scale - ESI 2007. In E. Vittori & L. Guerrieri (Eds.), Memorie Descrittive della Carta Geologica d’Italia: Vol. LXXIV (Issue May 2014, pp. 7–54). Servizio Geologico d’Italia.

Moernaut, J. (2020). Time-dependent recurrence of strong earthquake shaking near plate boundaries: A lake sediment perspective. Earth-Science Reviews, 210, 103344. https://doi.org/10.1016/j.earscirev.2020.103344

Moernaut, J., Daele, M. Van, Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., & De Batist, M. (2014). Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth, 119(3), 1607–1633. https://doi.org/10.1002/2013JB010738

Moernaut, J., De Batist, M., Charlet, F., Heirman, K., Chapron, E., Pino, M., Brümmer, R., & Urrutia, R. (2007). Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue. Sedimentary Geology, 195(3–4), 239–256. https://doi.org/10.1016/j.sedgeo.2006.08.005

Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., Kilian, R., Ladrón de Guevara, B., Pino, M., Urrutia, R., & De Batist, M. (2017). Lacustrine turbidites produced by surficial slope sediment remobilization: A mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology, 384, 159–176. https://doi.org/10.1016/j.margeo.2015.10.009

Molenaar, A., Van Daele, M., Huang, J. J. S., Strasser, M., De Batist, M., Pino, M., Urrutia, R., & Moernaut, J. (2022). Disentangling factors controlling earthquake-triggered soft-sediment deformation in lakes. Sedimentary Geology, 438, 106200. https://doi.org/10.1016/j.sedgeo.2022.106200

Molenaar, A., Van Daele, M., Vandorpe, T., Degenhart, G., De Batist, M., Urrutia, R., Pino, M., Strasser, M., & Moernaut, J. (2021). What controls the remobilization and deformation of surficial sediment by seismic shaking? Linking lacustrine slope stratigraphy to great earthquakes in South–Central Chile. Sedimentology, 68(6), 2365–2396. https://doi.org/10.1111/sed.12856

Molina, J. M., Alfaro, P., Moretti, M., & Soria, J. M. (1998). Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova, 10(3), 145–150. https://doi.org/10.1046/j.1365-3121.1998.00183.x

Monecke, K., Anselmetti, F. S., Becker, A., Schnellmann, M., Sturm, M., & Giardini, D. (2006). Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343–362. https://doi.org/10.1007/s00015-006-1193-x

Monecke, K., Anselmetti, F. S., Becker, A., Sturm, M., & Giardini, D. (2004). The record of historic earthquakes in lake sediments of Central Switzerland. Tectonophysics, 394(1–2), 21–40. https://doi.org/10.1016/j.tecto.2004.07.053

Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., & Wick, L. (2007). Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research, 68(2), 284–302. https://doi.org/10.1016/j.yqres.2007.07.002

Moser, M. (2020). GEOFAST 1:50.000 – Zusammenstellung ausgewählter Archivunterlagen der Geologischen Bundesanstalt, Blatt 204 Völkermarkt. Geologische Bundesanstalt.

Munsell. (2010). Munsell soil color charts : with genuine Munsell color chips. 2009 year revised. Grand Rapids, MI : Munsell Color, 2010. https://search.library.wisc.edu/catalog/9910109259802121

Müller, B., Wang, Y., Dittrich, M., & Wehrli, B. (2003). Influence of organic carbon decomposition on calcite dissolution in surficial sediments of a freshwater lake. Water Research, 37(18), 4524-4532, https://doi.org/10.1016/S0043-1354(03)00381-6

Müller, B., Wang, Y., Wehrli, B. (2006). Cycling of calcite in hard water lakes of different trophic states. Limnology and Oceanography, 51, 1678-1688, 10.4319/lo.2006.51.4.1678

Ndiaye, M., Clerc, N., Gorin, G., Girardclos, S., & Fiore, J. (2014). Lake Neuchâtel (Switzerland) seismic stratigraphic record points to the simultaneous Würmian deglaciation of the Rhône Glacier and Jura Ice Cap. Quaternary Science Reviews, 85, 1–19. https://doi.org/10.1016/j.quascirev.2013.11.017

Nemes, F., Neubauer, F., Cloetingh, S., & Genser, J. (1997). The Klagenfurt Basin in the Eastern Alps: An intra-orogenic decoupled flexural basin? Tectonophysics, 282(1–4), 189–203. https://doi.org/10.1016/S0040-1951(97)00219-9

Ohlendorf, C., & Sturm, M. (2018). Precipitation and Dissolution of Calcite in a Swiss High Alpine Lake. Arctic, Antarctic, and Alpine Research, 33, 410-417. https://doi.org/10.1080/15230430.2001.12003449

Ojala, A. E. K., Kosonen, E., Weckström, J., Korkonen, S., & Korhola, A. (2013). Seasonal formation of clastic-biogenic varves: the potential for palaeoenvironmental interpretations. GFF, 135(3-4), 237-247. https://doi.org/10.1080/11035897.2013.801925

Ojala, A. E. K., Mattila, J., Hämäläinen, J., & Sutinen, R. (2019). Lake sediment evidence of paleoseismicity: Timing and spatial occurrence of late- and postglacial earthquakes in Finland. Tectonophysics, 771, 228227. https://doi.org/10.1016/j.tecto.2019.228227

Oswald, P., Strasser, M., Hammerl, C., & Moernaut, J. (2021). Seismic control of large prehistoric rockslides in the Eastern Alps. Nature Communications, 12(1), 1059. https://doi.org/10.1038/s41467-021-21327-9

Oswald, P., Strasser, M., Skapski, J., Moernaut, J., & Oswald, C. P. (2022). Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps. Natural Hazards and Earth System Sciences, 22, 2057–2079, https://doi.org/10.5194/nhess-22-2057-2022

Owen, G. (2003). Load structures: Gravity-driven sediment mobilization in the shallow subsurface. Geological Society, London, Special Publications, 216, 21–34. https://doi.org/10.1144/GSL.SP.2003.216.01.03

Oxburgh, R., & Broecker, W. S. (1993). Pacific carbonate dissolution revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 103(1-2), 31-40. https://doi.org/10.1016/0031-0182(93)90049-O

Palmer, A. P., Bendle, J. M., MacLeod, A., Rose, J., & Thorndycraft, V. R. (2019). The micromorphology of glaciolacustrine varve sediments and their use for reconstructing palaeoglaciological and palaeoenvironmental change. Quaternary Science Reviews, 226, 105964. https://doi.org/10.1016/j.quascirev.2019.105964

Polonia, A., Albertazzi, S., Bellucci, L. G., Bonetti, C., Bonetti, J., Giorgetti, G., Giuliani, S., Correa, M. L., Mayr, C., Peruzza, L., Stanghellini, G., & Gasperini, L. (2021). Decoding a complex record of anthropogenic and natural impacts in the Lake of Cavazzo sediments, NE Italy. Science of the Total Environment, 787, 147659. https://doi.org/10.1016/j.scitotenv.2021.147659

Praet, N. (2020). Towards the construction of a lacustrine paleoseismic record in south-central Alaska : a trembling tale of landslides and turbidites. PhD Thesis, Ghent University. http://hdl.handle.net/1854/LU-8681726

Praet, N., Moernaut, J., Van Daele, M., Boes, E., Haeussler, P. J., Strupler, M., Schmidt, S., Loso, M. G., & De Batist, M. (2017). Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska). Marine Geology, 384, 103–119. https://doi.org/10.1016/j.margeo.2016.05.004

Praet, N., Van Daele, M., Collart, T., Moernaut, J., Vandekerkhove, E., Kempf, P., Haeussler, P. J., & De Batist, M. (2020). Turbidite stratigraphy in proglacial lakes: Deciphering trigger mechanisms using a statistical approach. Sedimentology, 67(5), 2332–2359. https://doi.org/10.1111/sed.12703

Praet, N., Van Daele, M., Moernaut, J., Mestdagh, T., Vandorpe, T., Jensen, B. J. L., Witter, R. C., Haeussler, P. J., & De Batist, M. (2022). Unravelling a 2300 year long sedimentary record of megathrust and intraslab earthquakes in proglacial Skilak Lake, south-central Alaska. Sedimentology, 69(5), 2151–2180. https://doi.org/10.1111/sed.12986

Rapuc, W., Arnaud, F., Sabatier, P., Anselmetti, F. S., Piccin, A., Peruzza, L., Bastien, A., Augustin, L., Régnier, E., Gaillardet, J., & Von Grafenstein, U. (2022). Instant sedimentation in a deep Alpine lake (Iseo, Italy) controlled by climate, human and geodynamic forcing. Sedimentology, 69(4), 1816–1840. https://doi.org/10.1111/sed.12972

Rapuc, W., Sabatier, P., Andrič, M., Crouzet, C., Arnaud, F., Chapron, E., Šmuc, A., Develle, A. L., Wilhelm, B., Demory, F., Reyss, J. L., Régnier, E., Daut, G., & Von Grafenstein, U. (2018). 6600 years of earthquake record in the Julian Alps (Lake Bohinj, Slovenia). Sedimentology, 65(5), 1777–1799. https://doi.org/10.1111/sed.12446

Ratschbacher, L., Frisch, W., Linzer, H.-G., & Merle, O. (1991). Lateral extrusion in the eastern Alps, Part 2: Structural analysis. Tectonics, 10(2), 257–271. https://doi.org/10.1029/90TC02623

Reichmann, M., Fresner, R., & Schulz, L. (2014). Meromixis an Kärntner Seen. Denisia, 33, 129–133.

Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41

Reinecker, J., & Lenhardt, W. A. (1999). Present-day stress field and deformation in eastern Austria. International Journal of Earth Sciences, 88(3), 532–550. https://doi.org/10.1007/s005310050283

Reitner, J. M. (2007). Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quaternary International, 164–165, 64–84. https://doi.org/10.1016/j.quaint.2006.12.016

Reusch, A., Loher, M., Bouffard, D., Moernaut, J., Hellmich, F., Anselmetti, F. S., Bernasconi, S. M., Hilbe, M., Kopf, A., Lilley, M. D., Meinecke, G., & Strasser, M. (2015). Giant lacustrine pockmarks with subaqueous groundwater discharge and subsurface sediment mobilization. Geophysical Research Letters, 42(9), 3465–3473. https://doi.org/10.1002/2015GL064179

Reusch, A., Moernaut, J., Anselmetti, F. S., & Strasser, M. (2016). Sediment mobilization deposits from episodic subsurface fluid flow-A new tool to reveal long-term earthquake records? Geology, 44(4), 243–246. https://doi.org/10.1130/G37410.1

Ridge, J. C., Balco, G., Bayless, R. L., Beck, C. C., Carter, L. B., Dean, J. L., Voytek, E. B., & Wei, J. H. (2012). The new north american varve chronology: A precise record of southeastern laurentide ice sheet deglaciation and climate, 18.2-12.5 kyr BP, and correlations with greenland ice core records. American Journal of Science, 312(7), 685–722. https://doi.org/10.2475/07.2012.01

Roberts, S. J., McCulloch, R. D., Emmings, J. F., Davies, S. J., Van Nieuwenhuyze, W., Sterken, M., Heirman, K., Van Wichelen, J., Diaz, C., Van de Vyver, E., Whittle, A., Vyverman, W., Hodgson, D. A., & Verleyen, E. (2022). Late Glacial and Holocene Palaeolake History of the Última Esperanza Region of Southern Patagonia. Frontiers in Earth Science, 10, 1–32. https://doi.org/10.3389/feart.2022.813396

Rovida, A., Antonucci, A., & Locati, M. (2022). The European Preinstrumental Earthquake Catalogue EPICA, the 1000-1899 catalogue for the European Seismic Hazard Model 2020. Earth System Science Data, 14(12), 5213–5231. https://doi.org/10.5194/essd-14-5213-2022

Sammartini, M., Moernaut, J., Anselmetti, F. S., Hilbe, M., Lindhorst, K., Praet, N., & Strasser, M. (2019). An atlas of mass-transport deposits in lakes. Submarine Landslides: Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles, 201–226. https://doi.org/10.1002/9781119500513.ch13

Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., & Seitz, F. (2018). Present-day surface deformation of the Alpine region inferred from geodetic techniques. Earth System Science Data, 10(3), 1503–1526. https://doi.org/10.5194/essd-10-1503-2018

Sbarra, P., Burrato, P., De Rubeis, V., Tosi, P., Valensise, G., Vallone, R., & Vannoli, P. (2023). Inferring the depth and magnitude of pre-instrumental earthquakes from intensity attenuation curves. Natural Hazards and Earth System Sciences, 23(3), 1007–1028. https://doi.org/10.5194/nhess-23-1007-2023

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1), 93–117. https://doi.org/10.1007/s00015-004-1113-x

Schmidt, R., Weckström, K., Lauterbach, S., Tessadri, R., & Huber, K. (2012). North Atlantic climate impact on early late-glacial climate oscillations in the south-eastern Alps inferred from a multi-proxy lake sediment record. Journal of Quaternary Science, 27(1), 40–50. https://doi.org/10.1002/jqs.1505

Schmidt, R., Wunsam, S., Brosch, U., Fott, J., Lami, A., Löffler, H., Marchetto, A., Müller, H. W., Pražáková, M., & Schwaighofer, B. (1998). Late and post-glacial history of meromictic Langsee (Austria), in respect to climate change and anthropogenic impact. Aquatic Sciences, 60(1), 56–88. https://doi.org/10.1007/s000270050026

Schnellmann, M., Anselmetti, F. S., Giardini, D., & Mckenzie, J. A. (2006). 15,000 Years of mass-movement history in Lake Lucerne: Implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae, 99(3), 409–428. https://doi.org/10.1007/s00015-006-1196-7

Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., & Ward, S. N. (2002). Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30(12), 1131. https://doi.org/10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2

Schnurrenberger, D., Russel, J., & Kelts, K. (2003). Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology, 29(2), 141–154. https://doi.org/10.1023/A:1023270324800

Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., & Preusser, F. (2018). Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere, 12(10), 3265–3285. https://doi.org/10.5194/tc-12-3265-2018

Shchukarev, A., Gälman, V., Rydberg, J., Sjöberg, S., & Renberg, I. (2008). Speciation of iron and sulphur in seasonal layers of varved lake sediment: an XPS study. Surface and Interface Analysis, 40(3-4), 354-357. https://doi.org/10.1002/sia.2704

Sims, J. D. (1973). Earthquake-Induced Structures in Sediments of Van Norman Lake, San Fernando, California. Science, 182(4108), 161–163. https://doi.org/10.1126/science.182.4108.161

Song, D., Che, A., Zhu, R., & Ge, X. (2019). Natural Frequency Characteristics of Rock Masses Containing a Complex Geological Structure and Their Effects on the Dynamic Stability of Slopes. Rock Mechanics and Rock Engineering, 52(11), 4457–4473. https://doi.org/10.1007/s00603-019-01885-7

Stein, S., & Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature, 462(7269), 87–89. https://doi.org/10.1038/nature08502

Stiny, V. J. (1934). Zur Kenntnis der Hochfläche von Rückersdorf (Kärnten). Jahrbuch Der Geologischen Bundesanstalt, 546.

Strasser, M., Anselmetti, F. S., Fäh, D., Giardini, D., & Schnellmann, M. (2006). Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology, 34(12), 1005. https://doi.org/10.1130/G22784A.1

Strasser, M., Monecke, K., Schnellmann, M., & Anselmetti, F. S. (2013). Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60(1), 319–341. https://doi.org/10.1111/sed.12003

Stucchi, M., Rovida, A., Gomez Capera, A. A., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., Gasperini, P., Kouskouna, V., Musson, R. M. W., Radulian, M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W., Makropoulos, K., Martinez Solares, J. M., Scotti, O., … Giardini, D. (2013). The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 523–544. https://doi.org/10.1007/s10950-012-9335-2

Sulpis, O., Lix, C., Mucci, A., & Boudreau, B. (2017). Calcite dissolution kinetics at the sediment-water interface in natural seawater. Marine Chemistry, 195, 70-83. https://doi.org/10.1016/j.marchem.2017.06.005

Szczerba, A., Pla‐Rabes, S., & Tylmann, W. (2023). Control of diatom and chrysophyte cyst dynamics by a meteorologically driven mixing regime in eutrophic Lake Żabińskie, northern Poland. Freshwater Biology, March, 1–15. https://doi.org/10.1111/fwb.14144

Tiberi, L., Costa, G., & Suhadolc, P. (2014). Source parameter estimates for some historical earthquakes in the south-eastern Alps using ground shaking scenarios. Bollettino Di Geofisica Teorica Ed Applicata, 55(3), 641–664. https://doi.org/10.4430/bgta0121

Van Daele, M., Araya-Cornejo, C., Pille, T., Vanneste, K., Moernaut, J., Schmidt, S., Kempf, P., Meyer, I., & Cisternas, M. (2019). Distinguishing intraplate from megathrust earthquakes using lacustrine turbidites. Geology, 47(2), 127–130. https://doi.org/10.1130/G45662.1

van Husen, D. (1987). Die Ostalpen in den Eiszeiten. Geologische Bundesanstalt. 24 pp.

van Husen, D. (2011). Quaternary Glaciations in Austria. In Developments in Quaternary Science (1st ed., Vol. 15, pp. 15–28). Elsevier Inc. https://doi.org/10.1016/B978-0-444-53447-7.00002-7

van Loon, A. J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M., & Soms, J. (2016). Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5(4), 363–380. https://doi.org/10.1016/j.jop.2016.05.002

Van Rensbergen, P., De Batist, M., Beck, C., & Manalt, F. (1998). High-resolution seismic stratigraphy of late quaternary fill of Lake Annecy (northwestern Alps): evolution from glacial to interglacial sedimentary processes. Sedimentary Geology, 117(1-2), 71-96. https://doi.org/10.1016/S0037-0738(97)00123-1

Vandekerkhove, E., Van Daele, M., Praet, N., Cnudde, V., Haeussler, P. J., & De Batist, M. (2020). Flood-triggered versus earthquake-triggered turbidites: A sedimentological study in clastic lake sediments (Eklutna Lake, Alaska). Sedimentology, 67(1), 364–389. https://doi.org/10.1111/sed.12646

Vanneste, K., Wils, K., & Van Daele, M. (2018). Probabilistic Evaluation of Fault Sources Based on Paleoseismic Evidence From Mass-Transport Deposits: The Example of Aysén Fjord, Chile. Journal of Geophysical Research: Solid Earth, 123(11), 9842–9865. https://doi.org/10.1029/2018JB016289

Wachniew, P., & Różański, K. (1997). Carbon budget of a mid-latitude, groundwater-controlled lake: Isotopic evidence for the importance of dissolved inorganic carbon recycling. Geochimica et Cosmochimica Acta, 61(12), 2453-2465. https://doi.org/10.1016/S0016-7037(97)00089-6

Wang, C. Y., & Manga, M. (2015). New streams and springs after the 2014 Mw6.0 South Napa earthquake. Nature Communications, 6, 6–11. https://doi.org/10.1038/ncomms8597

Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845

Weginger, S., Jia, Y., Papi-Isaba, M., Lenhardt, W., & Hausmann, H. (2019). Entwicklung einer regionalen Erdbebengefährdungskarte für Österreich. D-A-CH Tagungsband, 16, 27–34.

Wehr, J. D., & Sheath, R. (2003). Freshwater Habitats of Algae. Freshwater Algae of North America: Ecology and Classification, 11-57. https://doi.org/10.1016/B978-012741550-5/50003-9

Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Röhl, U., & Croudace, I. W. (2015). Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties. In: Croudace, I., Rothwell, R. (eds) Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9849-5_21

Wilhelm, B., Nomade, J., Crouzet, C., Litty, C., Sabatier, P., Belle, S., Rolland, Y., Revel, M., Courboulex, F., Arnaud, F., & Anselmetti, F. S. (2016). Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology. Journal of Geophysical Research: Earth Surface, 121(1), 2–16. https://doi.org/10.1002/2015JF003644

Wils, K., Van Daele, M., Kissel, C., Moernaut, J., Schmidt, S., Siani, G., & Lastras, G. (2020). Seismo-Turbidites in Aysén Fjord (Southern Chile) Reveal a Complex Pattern of Rupture Modes Along the 1960 Megathrust Earthquake Segment. Journal of Geophysical Research: Solid Earth, 125(9), 1–23. https://doi.org/10.1029/2020JB019405

ZAMG. (2021). AEC - Austrian Earthquake Catalogue. Seismological Service of the Zentralanstalt für Meteorologie und Geodynamik (ZAMG).

Zolitschka, B., Francus, P., Ojala, A. E. K., & Schimmelmann, A. (2015). Varves in lake sediments - a review. Quaternary Science Reviews, 117, 1–41. https://doi.org/10.1016/j.quascirev.2015.03.019

Lithologies, core-to seismic correlation and age-depth model of core KLOP18-L1.

Published

06-05-2024 — Updated on 15-05-2024

Section

Publications

Categories

How to Cite

Daxer, C., Wils, K., Ramisch, A., Strasser, M., & Moernaut, J. (2024). Contrasting sedimentary and long-lasting geochemical imprints of seismic shaking in a small, groundwater-fed lake basin (Klopeiner See, Eastern European Alps). Sedimentologika, 2(1). https://doi.org/10.57035/journals/sdk.2024.e21.1296