Microfossil and geochemical evidence for the Storegga tsunami at Budle Bay, Northumberland, UK

Authors

  • Leeza O. Pickering Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK https://orcid.org/0000-0002-3211-0568
  • Grace F. Summers Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK and Department of Geography, Durham University, Durham, DH1 3LE, UK https://orcid.org/0009-0002-7089-5930
  • Emma P. Hocking Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK https://orcid.org/0000-0002-8925-1695
  • Ed Garrett epartment of Environment and Geography, University of York, York, YO10 5NG, UK https://orcid.org/0000-0001-9985-0651
  • Alexander R. Simms Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA https://orcid.org/0000-0001-5034-2189

DOI:

https://doi.org/10.57035/journals/sdk.2024.e22.1280

Keywords:

Tsunami, Storm deposits, Geochemistry, Diatoms, Doggerland

Abstract

Evidence for the Storegga tsunami, which was generated by one of the world’s largest submarine slides, is well documented in Scotland, but the southerly extent of tsunami inundation in the UK is far more uncertain. Here, we combine new sedimentological, geochemical, microfossil, and ground-penetrating radar datasets to investigate the origins of two sand beds at Budle Bay, Northumberland. The lower of these two sand deposits is a fine- to medium-grained sand that fines upwards, is dominated by fragmented marine diatom taxa, and is characterised by elevated calcium concentrations. Two radiocarbon dated samples provide minimum age constraints on the timing of the deposition of the lower sand at around 8120–8380 cal yr BP. It is tentatively interpreted as being deposited by the Storegga tsunami. The upper sand bed is generally finer grained than the lower sand, and the calcium concentrations are considerably lower. One hypothesis is that the upper sand was deposited by the 1953 CE storm surge, but additional chronological control is required to test this interpretation. Our findings highlight the challenges associated with differentiating between storm and tsunami deposits and confirm the localised nature of preservation of Storegga tsunami deposits.

Downloads

Download data is not yet available.

References

Battarbee, R.W. (1986). Diatom analysis. In: Berglund, B.E. (Ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley, pp. 527-557. https://doi.org/10.1002/jqs.3390010111

Battarbee, R.W., Carvalho, L., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H. & Juggins, S. (2001). Diatoms. In: Smol, J.P., Birks, H.J.B. & Last, W.M. (Eds.) Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer, pp. 155-202. https://doi.org/10.1007/0-306-47668-1_8

Biester, H., Keppler, F., Putschew, A., Martinez-Cortizas, A. & Petri, M. (2004). Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environmental Science & Technology, 38(7), 1984-1991. https://doi.org/10.1021/es0348492

Bondevik, S., Løvholtb, F., Harbitz, C., Mangerud, J., Dawson, A. & Svendsen, J.I. (2005). The Storegga Slide tsunami - comparing field observations with numerical simulations. In: Solheim, A., Bryn, P., Berg, K., Sejrup, H.P., Mienert, J. (Eds.) Ormen Lange – an Integrated Study for Safe Field Development in the Storegga Submarine Area. Elsevier, pp. 195-208. https://doi.org/10.1016/B978-0-08-044694-3.50021-4

Bondevik, S., Mangerud, J., Dawson, S., Dawson, A. & Lohne, Ø. (2003). Record-breaking height for 8000-year old tsunami in the North Atlantic. Eos, 84(31), 289-300. https://doi.org/10.1029/2003EO310001

Bondevik, S., Stormo, S.K. & Skjerdal, G. (2012). Green mosses date the Storegga tsunami to the chilliest decades of the 8.2 ka cold event. Quaternary Science Reviews, 45, 1-6. https://doi.org/10.1016/j.quascirev.2012.04.020

Bondevik, S., Svendsen, J.I. & Mangerud, J. (1997). Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology, 44(6), 1115-1131. https://doi.org/10.1046/j.1365-3091.1997.d01-63.x

Boomer, I., Waddington, C., Stevenson, T. & Hamilton, D. (2007). Holocene coastal change and geoarchaeology at Howick, Northumberland, UK. The Holocene, 17(1), 89-104. https://doi.org/10.1177/0959683607073281

British Geological Survey (2020). GeoIndex Onshore, 1:50,000. https://www.bgs.ac.uk/map-viewers/geoindex-onshore/

Bronk Ramsey, C. (2009) Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-360. https://doi.org/10.1017/S0033822200033865

Chagué, C. (2020). Applications of geochemical proxies in paleotsunami research. In: Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E. (Eds.) Geological Records of Tsunamis and Other Extreme Waves. Elsevier, pp. 381-401. https://doi.org/10.1016/B978-0-12-815686-5.00018-3

Chagué, C., Sugawara, D., Goto, K., Goff, J., Dudley, W. & Gadd, P. (2018). Geological evidence and sediment transport modelling for the 1946 and 1960 tsunamis in Shinmachi, Hilo, Hawaii. Sedimentary Geology, 364, 319-333. https://doi.org/10.1016/j.sedgeo.2017.09.010

Chagué-Goff, C. (2010). Chemical signatures of palaeotsunamis: a forgotten proxy? Marine Geology, 271(1-2), 67-71. https://doi.org/10.1016/j.margeo.2010.01.010

Chagué-Goff, C., Goff, J., Wong, H.K.Y. & Cisternas, M. (2015) Insights from geochemistry and diatoms to characterise a tsunami’s deposit and maximum inundation limit. Marine Geology, 359, 22-34. https://doi.org/10.1016/j.margeo.2014.11.009

Chagué-Goff, C., Szczuciński, W. & Shinozaki, T. (2017). Applications of geochemistry in tsunami research: A review. Earth-Science Reviews, 165, 203-244. https://doi.org/10.1016/j.earscirev.2016.12.003

Cochran, U.A., Berryman, K.R., Mildenhall, D.C., Hayward, B.W., Southall, K. & Hollis, C.J. (2005). Towards a record of Holocene tsunami and storms for northern Hawke's Bay, New Zealand. New Zealand Journal of Geology and Geophysics, 48(3), 507-515. https://doi.org/10.1080/00288306.2005.9515129

Cuven, S., Paris, R., Falvard, S., Miot-Noirault, E., Benbakkar, M., Schneider, J.L. & Billy, I. (2013). High-resolution analysis of a tsunami deposit: Case-study from the 1755 Lisbon tsunami in southwestern Spain. Marine Geology, 337, 98-111. https://doi.org/10.1016/j.margeo.2013.02.002

Davidson, N.C. & Buck, A.L. (1997). An inventory of UK estuaries. Volume 1 Introduction and methodology. Joint Nature Conservation Committee.

Dawson, A.G. (1999). Linking tsunami deposits, submarine slides and offshore earthquakes. Quaternary International, 60(1), 119-126. https://doi.org/10.1016/S1040-6182(99)00011-7

Dawson, A., Bondevik, S. & Teller, J.T. (2011). Relative timing of the Storegga submarine slide, methane release, and climate change during the 8.2ka cold event. The Holocene, 21(7), 1167-1171. https://doi.org/10.1177/0959683611400467

Dawson, A.G., Long, D. & Smith, D.E. (1988). The Storegga slides: evidence from eastern Scotland for a possible tsunami. Marine Geology, 82(3-4), 271-276. https://doi.org/10.1016/0025-3227(88)90146-6

Dawson, A.G. & Shi, S. (2000). Tsunami deposits. Pure and Applied Geophysics, 157, 875-897. https://doi.org/10.1007/s000240050010

Dawson, S. (2007). Diatom biostratigraphy of tsunami deposits: examples from the 1998 Papua New Guinea tsunami. Sedimentary Geology, 200(3-4), 328-335. https://doi.org/10.1016/j.sedgeo.2007.01.011

Dawson, S. & Smith, D.E. (2000). The sedimentology of Middle Holocene tsunami facies in northern Sutherland, Scotland, UK. Marine Geology, 170(1-2), 69-79. https://doi.org/10.1016/S0025-3227(00)00066-9

Dawson, S., Smith, D.E., Ruffman, A. & Shi, S. (1996). The diatom biostratigraphy of tsunami sediments: examples from recent and middle Holocene events. Physics and Chemistry of the Earth, 21(1-2), 87-92. https://doi.org/10.1016/S0079-1946(97)00015-3

Dura, T., Hemphill-Haley, E., Sawai, Y. & Horton, B.P. (2016). The application of diatoms to reconstruct the history of subduction zone earthquakes and tsunamis. Earth-Science Reviews, 152, 181-197. https://doi.org/10.1016/j.earscirev.2015.11.017

Dura, T. & Hemphill-Haley, E. (2020). Diatoms in tsunami deposits. In: Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E. (Eds.) Geological Records of Tsunamis and Other Extreme Waves. Elsevier, pp. 291-322. https://doi.org/10.1016/B978-0-12-815686-5.00014-6

Engel, M. & Brückner, H. (2011). The identification of palaeo-tsunami deposits – a major challenge in coastal sedimentary research. Coastline Reports, 17, 65-80.

Engel, M., Pilarczyk, J., May, S.M., Brill, D. & Garrett, E. (2020). Geological Records of Tsunamis and Other Extreme Waves. Elsevier. https://doi.org/10.1016/C2017-0-03458-4

Fruergaard, M., Piasecki, S., Johannessen, P.N., Noe-Nygaard, N., Andersen, T.J., Pejrup, M. & Nielsen, L.H. (2015). Tsunami propagation over a wide, shallow continental shelf caused by the Storegga slide, southeastern North Sea, Denmark. Geology, 43(12), 1047-1050. https://doi.org/10.1130/G37151.1

Gaffney, V., Fitch, S., Bates, M., Ware, R.L., Kinnaird, T., Gearey, B., Hill, T., Telford, R., Batt, C., Stern, B., Whittaker, J., Davies, S., Ben Sharada, M., Everett, R., Cribdon, R., Kistler, L., Harris, S., Kearney, K., Walker, J., Muru, M., Hamilton, D., Law, M., Finlay, A., Bates, R. & Allaby, R.G. (2020). Multi-proxy characterisation of the Storegga tsunami and its impact on the early Holocene landscapes of the southern North Sea. Geosciences, 10(7), 270. https://doi.org/10.3390/geosciences10070270

Goff, J., McFadgen, B.G. & Chagué-Goff, C. (2004). Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Marine Geology, 204(1-2), 235-250.

https://doi.org/10.1016/S0025-3227(03)00352-9

Google Earth (2019) Budle Bay 55°37'01.36"N, 1°46'57.63"W [Online] Available at: http://www.google.com/earth/index.html

Goto, T., Satake, K., Sugai, T., Ishibe, T., Harada, T. & Murotani, S. (2015) Historical tsunami and storm deposits during the last five centuries on the Sanriku coast, Japan. Marine Geology, 367, 105-117. https://doi.org/10.1016/j.margeo.2015.05.009

Grauert, M., Björck, S. & Bondevik, S. (2001). Storegga tsunami deposits in a coastal lake on Suduroy, the Faroe Islands. Boreas, 30(4), 263-271. https://doi.org/10.1111/j.1502-3885.2001.tb01045.x

Guthrie, G., Cooper, N., Howell, D., Cooper, T., Gardiner, J., Lawton, P., Gregory, A. & Stevens, R. (2009). Northumberland and North Tyneside Shoreline Management Plan 2. Royal Haskoning.

Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F. & Bryn, P. (2005). The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1-2) 123-136. https://doi.org/10.1016/j.marpetgeo.2004.10.008

Hartley, B. (1996) An Atlas of British Diatoms. Biopress.

Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., Grootes, P.M., Hughen, K.A., Kromer, B., Reimer, P.J., Adkins, J., Burke, A., Cook, M.S., Olsen, J. & Skinner, L.C. (2020). Marine20 - The marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon, 62(4), 779-820. https://doi.org/10.1017/RDC.2020.68

Hocking, E.P., Garrett, E., Aedo, D., Carvajal, M. & Melnick, D. (2021). Geological evidence of an unreported historical Chilean tsunami reveals more frequent inundation. Communications Earth and Environment, 2, 245. https://doi.org/10.1038/s43247-021-00319-z

Horton, B.P., Rossi, V. & Hawkes, A.D. (2009). The sedimentary record of the 2005 hurricane season from the Mississippi and Alabama coastlines. Quaternary International, 195(1-2), 15-30. https://doi.org/10.1016/j.quaint.2008.03.004

Jüttner, I., Carter, C., Chudaev, D., Cox, E.J., Ector, L., Jones, V., Kelly, M.G., Kennedy, B., Mann, D.G., Turner, J.A., Van de Vijver, B., Wetzel, C.E. & Williams, D.M. (2023). Freshwater Diatom Flora of Britain and Ireland Amgueddfa Cymru - National Museum of Wales. https://naturalhistory.museumwales.ac.uk/diatoms

Kortekaas, S. & Dawson, A.G. (2007). Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology, 200(3-4), 208-221. https://doi.org/10.1016/j.sedgeo.2007.01.004

Kylander, M.E., Ampel, L., Wohlfarth, B. & Veres, D. (2011). High‐resolution X‐ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science, 26(1), 109-117. https://doi.org/10.1002/jqs.1438

Leynaud, D., Mienert, J. & Vanneste, M. (2009). Submarine mass movements on glaciated and non-glaciated European continental margins: A review of triggering mechanisms and preconditions to failure. Marine and Petroleum Geology, 26(5), 618-632. https://doi.org/10.1016/j.marpetgeo.2008.02.008

Linsley, S. (2005). Ports and Harbours of Northumberland. Tempus Publishing.

Long, A.J., Barlow, N.L.M., Dawson, S., Hill, J., Innes, J.B., Kelham, C., Milne, F.D. & Dawson, A. (2016). Lateglacial and Holocene relative sea‐level changes and first evidence for the Storegga tsunami in Sutherland, Scotland. Journal of Quaternary Science, 31(3), 239-255. https://doi.org/10.1002/jqs.2862

Micallef, A., Masson, D.G., Berndt, C. & Stow, D.A.V. (2009). Development and mass movement processes of the north-eastern Storegga Slide. Quaternary Science Reviews, 28(5-6), 433-448. https://doi.org/10.1016/j.quascirev.2008.09.026

Morton, R.A., Gelfenbaum, G. & Jaffe, B.E. (2007). Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200(3-4), 184-207. https://doi.org/10.1016/j.sedgeo.2007.01.003

Nanayama, F., Furukawa, R., Shigeno, K., Makino, A., Soeda, Y. & Igarashi, Y. (2007). Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sedimentary Geology, 200(3-4), 275-294. https://doi.org/10.1016/j.sedgeo.2007.01.008

Nentwig, V., Bahlburg, H., Górecka, E., Huber, B., Bellanova, P., Witkowski, A. & Encinas, A. (2018). Multiproxy analysis of tsunami deposits - The Tirúa example, central Chile. Geosphere, 14(3), 1067-1086. https://doi.org/10.1130/GES01528.1

Nichol, S.L., Goff, J.R., Devoy, R.J.N., Chagué-Goff, C., Hayward, B. & James, I. (2007). Lagoon subsidence and tsunami on the West Coast of New Zealand. Sedimentary Geology, 200(3-4), 248-262. https://doi.org/10.1016/j.sedgeo.2007.01.019

Parsons, M.L. (1998). Salt marsh sedimentary record of the landfall of Hurricane Andrew on the Louisiana coast: diatoms and other paleoindicators. Journal of Coastal Research, 14(3), 939-950.

Pilarczyk, J.E., Dura, T., Horton, B.P., Engelhart, S.E., Kemp, A.C. & Sawai, Y. (2014). Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogeography, Palaeoclimatology, Palaeoecology, 413, 144-157. https://doi.org/10.1016/j.palaeo.2014.06.033

Ramírez-Herrera, M.T., Lagos, M., Hutchinson, I., Kostoglodov, V., Machain, M.L., Caballero, M., Goguitchaichvili, A., Aguilar, B., Chagué-Goff, C., Goff, J., Ruiz-Fernández, A.C., Ortiz, M., Nava, H., Bautista, F., Lopez, G.I. & Quintana, P. (2012). Extreme wave deposits on the Pacific coast of Mexico: Tsunamis or storms? — A multi-proxy approach. Geomorphology, 139-140, 360-371. https://doi.org/10.1016/j.geomorph.2011.11.002

Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., van der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. & Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62(4), 725-757. https://doi.org/10.1017/RDC.2020.41

Rush, G., Garrett, E., Bateman, M.D., Bigg, G.R., Hibbert, F.D., Smith, D.E. & Gehrels, W.R. (2023). The magnitude and source of meltwater forcing of the 8.2 ka climate event constrained by relative sea-level data from eastern Scotland. Quaternary Science Advances, 100119. https://doi.org/10.1016/j.qsa.2023.100119

Russell, N., Cook, G.T., Ascough, P.L. & Scott, E.M. (2015). A period of calm in Scottish seas: A comprehensive study of ΔR values for the northern British Isles coast and the consequent implications for archaeology and oceanography. Quaternary Geochronology, 30, 34-41. https://doi.org/10.1016/j.quageo.2015.08.001

Sawai, Y., Jankaew, K., Martin, M.E., Prendergast, A., Choowong, M. & Charoentitirat, T. (2009). Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand. Marine Micropaleontology, 73(1-2), 70-79. https://doi.org/10.1016/j.marmicro.2009.07.003

Sawai, Y., Nasu, H. & Yasuda, Y. (2002). Fluctuations in relative sea‐level during the past 3000 yr in the Onnetoh estuary, Hokkaido, northern Japan. Journal of Quaternary Science, 17(5-6), 607-622. https://doi.org/10.1002/jqs.708

Sharrocks, P.D. & Hill, J. (2023) Evaluating the impact of the Storegga tsunami on Mesolithic communities in Northumberland. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3586

Shennan, I., Horton, B., Innes, J., Gehrels, R., Lloyd, J., McArthur, J. & Rutherford, M. (2000). Late Quaternary sea-level changes, crustal movements and coastal evolution in Northumberland, UK. Journal of Quaternary Science, 15(3), 215-237. https://doi.org/10.1002/(SICI)1099-1417(200003)15:3%3C215::AID-JQS505%3E3.0.CO;2-%23

Smith, D.E., Shi, S., Cullingford, R.A., Dawson, A.G., Dawson, S., Firth, C.R., Foster, I.D.L., Fretwell, P.T., Haggart, B.A., Holloway, L.K. & Long, D. (2004). The Holocene Storegga slide tsunami in the United Kingdom. Quaternary Science Reviews, 23(23-24), 2291-2321. https://doi.org/10.1016/j.quascirev.2004.04.001

Sutherland, J. (2018 pers. comm.) Personal communication: conversation on 26th June 2018 at Ross Farm, Budle Bay.

Swindles, G.T., Galloway, J.M., Macumber, A.L., Croudace, I.W., Emery, A.R., Woulds, C., Bateman, M.D., Parry, L., Jones, J.M., Selby, K., Rushby, G.T., Baird, A.J., Woodroffe, S.A. & Barlow, N.L.M. (2018). Sedimentary records of coastal storm surges: Evidence of the 1953 North Sea event. Marine Geology, 403, 262-270. https://doi.org/10.1016/j.margeo.2018.06.013

Tappin, D.R. (2017). Tsunamis from submarine landslides. Geology Today, 33(5), 190-200. https://doi.org/10.1111/gto.12200

Troels-Smith, J. (1955). Karakterisering af løse jordarter (Characterisation of unconsolidated sediments). Danmarks Geologiske Undersøgelse IV. Række, 3(10), 1-73. https://doi.org/10.34194/raekke4.v3.6989

Tsompanoglou, K., Croudace, I.W., Birch, H. & Collins, M. (2011). Geochemical and radiochronological evidence of North Sea storm surges in salt marsh cores from The Wash embayment (UK). The Holocene, 21(2), 225-236. https://doi.org/10.1177/0959683610378878

Wagner, B., Bennike, O., Klug, M. & Cremer, H. (2007). First identification of Storegga tsunami deposits from East Greenland. Journal of Quaternary Science, 22(4) 321-325. https://doi.org/10.1002/jqs.1064

Wilson, P., Orford, J.D., Knight, J., Braley, S.M. & Wintle, A.G. (2001). Late Holocene (post-4000 years BP) coastal dune development in Northumberland, northeast England. The Holocene, 11(2), 215-229. https://doi.org/10.1191/095968301667179797

Woodroffe, S.A., Hill, J., Bustamante-Fernandez, E., Lloyd, J.M., Luff, J., Richards, S. & Shennan, I. (2023). On the varied impact of the Storegga tsunami in northwest Scotland. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3539

Two plots showing principal component analysis of (left) geochemical data from P4 and (right) diatom data from P2.

Published

2024-08-12 — Updated on 2024-08-13

Section

Publications

Categories

How to Cite

Pickering, L. O., Summers, G. F., Hocking, E. P., Garrett, E., & Simms, A. R. (2024). Microfossil and geochemical evidence for the Storegga tsunami at Budle Bay, Northumberland, UK. Sedimentologika, 2(2). https://doi.org/10.57035/journals/sdk.2024.e22.1280