Micro-facies characterization of the Cane Creek Shale, Paradox Basin, Utah: implications of diagenetic controls on reservoir quality

Authors

  • Raul I. Ochoa Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT, 84112, USA https://orcid.org/0000-0002-2108-3621
  • Lauren P. Birgenheier Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake City, UT, 84112, USA https://orcid.org/0000-0001-6951-0939
  • Elliot Jagniecki Utah Geological Survey, PO Box 146100, Salt Lake City, UT 84114, USA https://orcid.org/0000-0001-8292-7800
  • Michael D. Vanden Berg Utah Geological Survey, PO Box 146100, Salt Lake City, UT 84114, USA

DOI:

https://doi.org/10.57035/journals/sdk.2024.e22.1278

Keywords:

Mudstone sedimentology, Mudrocks, Reservoir characterization, Petrographic analysis, Diagenesis

Abstract

The fine-grained Pennsylvanian Cane Creek Shale of the Paradox Formation, Paradox Basin, Utah exhibits relatively thin cyclic interbeds of contrasting lithologies including fine sandstone to siltstone, organic-rich carbonate and dolomitic mudstone, and evaporites. As such, it provides a unique opportunity to evaluate micro-facies and the fluid storage capacity potential of mixed fine-grained systems. Micro-facies descriptions were performed using core and petrographic analyses, including scanning electron microscopy with energy dispersive spectroscopy. The study leverages core-based porosity and permeability data, as well as previous core description. These data are used together to explore mineralogical depositional and diagenetic controls on porosity and permeability. Twelve micro-facies were described based on sedimentological textures, grain size, lithology, and mineralogy categorized into three groups: 1) sandstone to siltstone, 2) mudstone, and 3) evaporitic micro-facies. Sandstone to siltstone micro-facies exhibit variable porosity and permeability. Porosity connectivity is dependent on the degree of authigenic cementation and compaction that negatively impacts porosity. Mudstone micro-facies show less variability in porosity and permeability; and are characterized by carbonate content, organic-matter, and clay nanopores. The development of early carbonate grains maintains porosity in mudstone and dolomitic siltstone micro-facies. Evaporitic micro-facies represented by evaporitic sabkha-like conditions are characterized by pore-reducing anhydrite and halite cement. A diagenetic paragenetic sequence was developed to assess the timing and impact of mineralogy on reservoir quality. Early (eogenetic), Middle (mesogenetic), and Late (telogenetic) stages correspond with diagenetic stages and known tectonic basin events. Syndepositional dolomite and diagenetic illite/smectite authigenic cements are the main controls on reservoir quality and have opposing effects related to porosity and permeability by preserving early pore space or reducing porosity and permeability.

Downloads

Download data is not yet available.

References

Awwiller, D. N. (1993). Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks; a study from the Texas Gulf Coast Paleocene-Eocene. Journal of Sedimentary Petrology, 63(3), 501–512. https://doi.org/10.1306/D4267B3B-2B26-11D7-8648000102C1865D

Barbeau, D. L. (2003). A flexural model for the Paradox Basin: Implications for the tectonics of the Ancestral Rocky Mountains. Basin Research, 15(1), 97–115. https://doi.org/10.1046/j.1365-2117.2003.00194.x

Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268(1), 1–23. https://doi.org/10.2475/ajs.268.1.1

Bjørlykke, K. (1999). Principal aspects of compaction and fluid flow in mudstones. Geological Society Special Publication, 158, 73–78. https://doi.org/10.1144/GSL.SP.1999.158.01.06

Blair, T. C., & McPherson, J. G. (1999). Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research, 69(1), 6–19. https://doi.org/10.2110/jsr.69.6

Burley, S. D., Kantorowicz, J. D., & Waugh, B. (1985). Clastic Diagenesis. Geological Society of London Special Publication, (1979), 189–226. https://doi.org/10.1144/GSL.SP.1985.018.01.10

Busch, B., Adelmann, D., Herrmann, R., & Hilgers, C. (2022). Controls on compactional behavior and reservoir quality in a Triassic Buntsandstein reservoir, Upper Rhine Graben, SW Germany. Marine and Petroleum Geology, 136, 105437. https://doi.org/10.1016/j.marpetgeo.2021.105437

Casas, E., & Lowenstein, T. K. (1989). Diagenesis of saline pan halite: Comparisions of petrographic features of modern, Quaternary and Permian halites. Journal of Sedimentary Petrology, 59(5), 724–739. https://doi.org/10.1306/212F905C-2B24-11D7-8648000102C1865D

Choquette, P. W., & Pray, L. C. (1970). Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin, 54(2), 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d

Coleman, M. L. (1985). Geochemistry of Diagenetic Non-Silicate Minerals Kinetic Considerations. Philosophical Transactions of the Royal Society of London, A315(1531), 39–56. https://doi.org/10.1098/rsta.1985.0028

Court, W. M., Paul, A., & Lokier, S. W. (2017). The preservation potential of environmentally diagnostic sedimentary structures from a coastal sabkha. Marine Geology, 386, 1–18. https://doi.org/10.1016/j.margeo.2017.02.003

Curtis, C. D., & Coleman, M. L. (1986). Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences. Roles of Organic Matter in Sediment Diagenesis (SP38), 23–33. https://doi.org/10.2110/pec.86.38.0023

Dean, W. E., & Stark, D. D. (1920). A convenient method for the determination of water in petroleum and other organic emulsions. The Journal of Industrial and Engineering Chemistry, 12(5), 486–490. https://doi.org/10.1021/ie50125a025

Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. Classification of Carbonate Rocks--A Symposium, 108–121. https://doi.org/10.1306/M1357

Egenhoff, S. O., Fishman, N. S., Lowers, H. A., & Ahlberg, P. (2019). The complexity of mudstone diagenesis–some insight from the Tøyen Shale, Lower to Middle Ordovician, southern Sweden. Gff, 141(1), 54–67. https://doi.org/10.1080/11035897.2018.1525620

Evans, J. E., & Reed, J. M. (2007). Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A. Sedimentary Geology, 195(3–4), 161–181. https://doi.org/10.1016/j.sedgeo.2006.07.010

Fielding, C. R. (2021). Late Palaeozoic cyclothems – A review of their stratigraphy and sedimentology. Earth-Science Reviews, 217, 103612. https://doi.org/10.1016/j.earscirev.2021.103612

Fishman, N. S., Egenhoff, S. O., Boehlke, A. R., & Lowers, H. A. (2015). Petrology and diagenetic history of the upper shale member of the late Devonian-early Mississippian Bakken Formation, Williston Basin, North Dakota. Special Paper of the Geological Society of America, 515, 125–151. https://doi.org/10.1130/2015.2515(07)

Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology, 62(4), 344–359. https://doi.org/10.1086/626171

Giles, M. R., Stevenson, S., Martin, S. V., Cannon, S. J. C., Hamilton, P. J., Marshall, J. D., & Samways, G. M. (1992). The reservoir properties and diagenesis of the Brent Group; a regional perspective. In A. C. Morton, R. S. Haszeldine, M. R. Giles, & S. Brown (Eds.), Geological Society Special Publications (pp. 289–328). Geological Society of London, London, United Kingdom. https://doi.org/10.1144/GSL.SP.1992.061.01.16

Goldhammer, R. K., Oswald, E. J., & Dunn, P. A. (1991). Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin. Bulletin of the Kansas Geological Society, Vol. 233, pp. 361–413. http://www.kgs.ku.edu/Publications/Bulletins/233/Goldhammer/

Gregg, J. M., & Shelton, K. L. (1990). Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri. Journal of Sedimentary Petrology, 60(4), 549–562. https://doi.org/10.1306/212F91E2-2B24-11D7-8648000102C1865D

Gregg, J. M., & Sibley, D. F. (1984). Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology, 54(3), 908–931. https://doi.org/10.1306/212F8535-2B24-11D7-8648000102C1865D

Grove, K. W., Horgan, C. C., Flores, F. E., & Al., E. (1993). Bartlett Flat Big Flat (Kane Springs Unit). In B. G. Hill & S. R. Bereskin (Eds.), Oil and Gas Fields of Utah: 22. Utah, USA.

Haeri-Ardakani, O., Al-Aasm, I., Coniglio, M., & Samson, I. (2013). Diagenetic evolution and associated mineralization in Middle Devonian carbonates, southwestern Ontario, Canada. Bulletin of Canadian Petroleum Geology, 61(1), 41–58. https://doi.org/10.2113/gscpgbull.61.1.41

Hite, R. J. (1960). Stratigraphy of the saline facies of the southeastern Paradox Member of the Hermosa Formation of southeastern Utah and southwestern Colorado: Four Corners Geological Assocation. 3rd Annual Field Conference Guidebook, 86–89. https://doi.org/10.3133/ofr6070

Hite, R. J., Anders, D. E., & Ging, T. G. (1984). Organic-rich source rocks of the Pennsylvanian age in the Paradox Basin of Utah and Colorado. Hydrocarbon Source Rocks of the Greater Rocky Mountain Region, 255–274. https://doi.org/10.1002/jps.2600680318

Hite, R. J., & Buckner, D. H. (1981). Stratigraphic correlations, facies concepts, and cyclicity in Pennsylvanian rocks of the Paradox Basin. In D. L. Wiegand (Ed.), Geology of the Paradox Basin Rocky Mountain Association of Geologists Field Conference (pp. 147–159).

Houseknecht, D. W. (1987). Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones. American Association of Petroleum Geologists Bulletin, 71(6), 633–642. https://doi.org/10.1306/9488787f-1704-11d7-8645000102c1865d

Howard, J. J. (1992). Influence of Authigenic-Clay Minerals on Permeability. Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, (47), 257–264. https://doi.org/10.2110/pec.92.47.0257

Huggett, J. M. (1996). Aluminosilicate diagenesis in a Tertiary sandstone-mudrock sequence from Central North Sea, UK. Clay Minerals, (31), 523–536. https://doi.org/10.1180/claymin.1996.031.4.10

Jagniecki, E. A., Gall, R., Sitla, T. W., & Berg, M. Vanden. (2019). Geologic Characterization of the Northern Cane Creek Shale Play, Paradox Basin, Utah.

Jagniecki, E. A., Vanden Berg, M., Ochoa, R. I., & Birgenheier, L. P. (2022). Sedimentology and Reservoir Characterization of the Emerging Cane Creek Play, Paradox Formation, Northern Paradox Basin, Southeastern Utah. AAPG Rocky Mountain Section Meeting, Denver, CO, 24-27 July 2022.

Karner, S. L., Chester, J. S., Chester, F. M., Kronenberg, A. K., & Hajash, A. (2005). Laboratory deformation of granular quartz sand: Implications for the burial of clastic rocks. American Association of Petroleum Geologists Bulletin, 89(5), 603–625. https://doi.org/10.1306/12200404010

Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., & Demko, T. M. (2015). Capturing Key Attributes of Fine-Grained Sedimentary Rocks In Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. Journal of Sedimentary Research, 85(3), 230–246. https://doi.org/10.2110/jsr.2015.11

Li, Z., & Schieber, J. (2020). Application of sequence stratigraphic concepts to the Upper Cretaceous Tununk Shale Member of the Mancos Shale Formation, south-central Utah: Parasequence styles in shelfal mudstone strata. Sedimentology, 67(1), 118–151. https://doi.org/10.1111/sed.12637

Löhr, S. C., Baruch, E. T., Hall, P. A., & Kennedy, M. J. (2015). Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Organic Geochemistry, 87, 119–132. https://doi.org/10.1016/j.orggeochem.2015.07.010

Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098. https://doi.org/10.1306/08171111061

Lucia, F. J. (1983). Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space. Journal of Petroleum Technology, 35(3), 629–637. https://doi.org/10.2118/10073-PA

Lutz, S. J., Hickman, S., Davatzes, N., Zemach, E., Drakos, P., & Robertson-Tait, A. (2010). Rock mechanical testing in support of well stimulation activities at the Desert Peak geothermal field, Nevada. Transactions - Geothermal Resources Council, 34 1, 341–348.

Macquaker, J. H. S., Taylor, K. G., & Gawthorpe, R. L. (2007). High-resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. Journal of Sedimentary Research, 77(4), 324–339. https://doi.org/10.2110/jsr.2007.029

Macquaker, J. H. S., Taylor, K. G., Keller, M., & Polya, D. (2014). Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones. AAPG Bulletin, 98(3), 587–603. https://doi.org/10.1306/08201311176

Makowitz, A., Lander, R. H., & Milliken, K. L. (2006). Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction. American Association of Petroleum Geologists Bulletin, 90(6), 873–885. https://doi.org/10.1306/12190505044

McCormack, K. L., McLennan, J. D., Jagniecki, E. A., & McPherson, B. J. (2023). Discrete Measurements of the Least Horizontal Principal Stress from Core Data: An Application of Viscoelastic Stress Relaxation. SPE Reservoir Evaluation & Engineering, 26, 827–841. https://doi.org/10.2118/214669-pa

Milliken, K. L., & Olson, T. (2017). Silica Diagenesis, Porosity Evolution, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U.S.A. Journal of Sedimentary Research, 87, 366–387. https://doi.org/10.2110/jsr.2017.24

Milliken, K. L., Rudnicki, M., Awwiller, D. N., & Zhang, T. (2013). Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2), 177–200. https://doi.org/10.1306/07231212048

Moore, C. H. (1989). Carbonate diagenesis and porosity. Elsevier.

Nicot, J. P., Darvari, R., Smye, K. M., & Goodman, E. (2023). Geochemical insights from formation waters produced from Wolfcampian and Leonardian intervals of the Midland Basin, Texas, USA. Applied Geochemistry, 150, 105585. https://doi.org/10.1016/j.apgeochem.2023.105585

Nuccio, V. F., & Condon, S. M. (1996). Burial and Thermal History of the Paradox Basin, Utah and Colorado, and Petroleum Potential of the Middle Pennsylvanian Paradox Formation. In Geology and Resources of the Paradox Basin: Utah Geological Association Guidebook 25 (p. 18). https://doi.org/10.3133/b00O

Pittman, E. D., Larese, R. E., & Heald, M. T. (1992). Clay Coats: Occurrence and Relevance To Preservation of Porosity in Sandstones. In D. W. Houseknecht & E. D. Pittman (Eds.), Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones (pp. 241–255). https://doi.org/10.2110/pec.92.47.0241

Quandt, D., Busch, B., Schmidt, C., & Hilgers, C. (2022). Diagenesis and controls on reservoir quality of Lower Triassic red bed sandstones (Buntsandstein) from a marginal basin facies, southwest Germany. Marine and Petroleum Geology, 142, 105744. https://doi.org/10.1016/j.marpetgeo.2022.105744

Raiswell, R. (1982). Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 82, 1244–1263. https://doi.org/10.2475/ajs.282.8.1244

Rasmussen, L., & Rasmussen, D. L. (2009). Burial History Analysis of the Pennsylvanian Petroleum System in the Deep Paradox Basin Fold and Fault Belt, Colorado and Utah. RMAG Special Publication, The Parado, 24–94.

Saller, A. H., Barton, J. W., & Barton, R. E. (1989). Slope sedimentation associated with a vertically building shelf, Bone Spring Formation, Mescalero Escarpe field, southeastern New Mexico. Controls on Carbonate Platform and Basin Development, 275–288. https://doi.org/10.2110/pec.89.44.0275

Schieber, J., Lazar, R., Bohacs, K., Klimentidis, R., Dumitrescu, M., & Ottmann, J. (2016). An SEM study of porosity in the eagle ford shale of Texas-pore types and porosity distribution in a depositional and sequence-stratigraphic context. AAPG Memoir, 110, 167–186. https://doi.org/10.1306/13541961M1103589

Sondergeld, C. H., Newsham, K. E., Comisky, J. T., Rice, M. C., & Rai, C. S. (2010). Petrophysical Considerations in Evaluating and Producing Shale Gas Resources. SPE Unconventional Gas Conference. https://doi.org/10.2118/131768-MS

Soreghan, G. S., Soreghan, M. J., & Hamilton, M. A. (2008). Origin and significance of loess in late Paleozoic western Pangaea: A record of tropical cold? Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3–4), 234–259. https://doi.org/10.1016/j.palaeo.2008.03.050

Soreghan, G. S., Soreghan, M. J., Sweet, D. E., & Moore, K. D. (2009). Hot Fan or Cold Outwash? Hypothesized Proglacial Deposition in the Upper Paleozoic Cutler Formation, Western Tropical Pangea. Journal of Sedimentary Research, 79, 495–522. https://doi.org/10.2110/jsr.2009.055

Stevenson, G. M., & Wray, L. L. (2009). History of Petroleum Exploration of Paleozoic Targets in the Paradox Basin. Rocky Mountain Association of Geologists, Special Publication, 1–23.

Stokes, W. L. (1986). Geology of Utah (sixth edit). Utah, USA: Utah Museum of Natural History.

Taylor, K. G., & Macquaker, J. H. S. (2000). Early diagenetic pyrite morphology in a mudstone-dominated succession: The Lower Jurassic Cleveland Ironstone Formation, eastern England. Sedimentary Geology, 131(1–2), 77–86. https://doi.org/10.1016/S0037-0738(00)00002-6

Taylor, K. G., & Macquaker, J. H. S. (2014). Diagenetic alterations in a silt- and clay-rich mudstone succession: an example from the Upper Cretaceous Mancos Shale of Utah, USA. Clay Minerals, 49(2), 213–227. https://doi.org/10.1180/claymin.2014.049.2.05

Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., Kittridge, M. G., Macaulay, C. I., Espejo, I. S. (2010). Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. American Association of Petroleum Geologists Bulletin, 94(8), 1093–1132. https://doi.org/10.1306/04211009123

Trudgill, B. D. (2011). Evolution of salt structures in the northern Paradox Basin: controls on evaporite deposition, salt wall growth and supra-salt stratigraphic architecture. Basin Research, 23(2), 208–238. https://doi.org/10.1111/j.1365-2117.2010.00478.x

Udden, J. A. (1914). Mechanical Composition of Clastic Sediments. Geological Society of America Bulletin, 25, 655–744. https://doi.org/doi.org/10.1130/GSAB-25-655

Warren, J. K. (2010). Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3–4), 217–268. https://doi.org/10.1016/j.earscirev.2009.11.004

Warren, J. K., & Kendall, C. G. C. (1985). Comparison of Sequences Formed in Marine Sabkha and Salina Settings C Modern and Ancient. AAPG Bulletin, 69, 1013–1023. https://doi.org/http://dx.doi.org/10.1306/AD462B46-16F7-11D7-8645000102C1865D

Whidden, K. J., Anna, L. O., Pearson, K. M., & Lillis, P. G. (2012). Assessment of Undiscovered Oil and Gas Resources in the Paradox Basin Province, Utah, Colorado, New Mexico, and Arizona. U.S. Geological Survey Fact Sheet 2012-3031, 4.

Whidden, K. J., Lillis, P. G., Anna, L. O., Pearson, K. M., & Dubiel, R. F. (2014). Geology and Total Petroleum Systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona. The Mountain Geologist, 51(2), 119–138.

Yau, Y.-C., Peacor, D. R., & Mcdowell, S. D. (1987). Smectite-to-illite reactions in salton sea shales: a transmission and analytical electron microscopy study. Journal of Sedimentary Petrology, 57(2), 335–342. https://doi.org/10.1306/212F8B20-2B24-11D7-8648000102C1865D

The illustration shows SEM petrographs with composite elemental EDS maps.

Downloads

Published

2024-10-18

Section

Publications

Categories

How to Cite

Ochoa, R. I., Birgenheier, L. P., Jagniecki, E., & Vanden Berg, M. D. (2024). Micro-facies characterization of the Cane Creek Shale, Paradox Basin, Utah: implications of diagenetic controls on reservoir quality. Sedimentologika, 2(2). https://doi.org/10.57035/journals/sdk.2024.e22.1278