Distinguishing climate and tectonic signals in the stratigraphy of the Kura Basin, the southeastern foreland of the Greater Caucasus

Authors

DOI:

https://doi.org/10.57035/journals/sdk.2024.e21.1272

Keywords:

Greater Caucasus, Kura Basin, Environmental Signals, Foreland Basin, Stratigraphy

Abstract

Assessing the relative contributions of tectonics and climate in orogenic systems and the stratigraphy preserved within their fringing basins has guided research for decades. Determining the role of these contributions is non-trivial and is difficult due to variations in both magnitude and period over which fluctuations in tectonics and climate occur, typically >105 – 7 years and <105 years, respectively. The Greater Caucasus is a young orogen that offers a unique opportunity to assess these critical roles through analysis of exposures of the foreland stratigraphy. Here, we synthesize available measured stratigraphic sections from within the Kura Fold-Thrust Belt and adjoining regions, creating multiple paleogeographic reconstructions for key regional chronostratigraphic stages, and then assessing the Kura Basin’s response time throughout these stages. We use basin response time as a proxy for whether tectonics or climate fluctuations could be preserved within the Kura Fold-Thrust Belt stratigraphy and, thus, what changes in depositional environments during those periods are more likely to reflect. In general, estimates of basin response times indicate that tectonic signals could be preserved throughout the Kura Basin during the deposition of the Productive Series. Climatic signals would likely be preserved during the deposition of the Akchagyl stage, although tectonics signals cannot be ruled out. During the Apsheronian stage, both tectonic and climate signals can be preserved. These results highlight that a foreland basin system can fluctuate between being able to record mixtures of tectonic and climatic signals during both different geologic stages and within the same stage across a foreland.

Downloads

Download data is not yet available.

References

Abdullayev, N. R., Weber, J., Baak, C. G. C. van, Aliyeva, E., Leslie, C., Riley, G. W., O’Sullivan, P., & Kislitsiyn, R. (2018). Detrital zircon and apatite constraints on depositional ages, sedimentation rates and provenance: Pliocene Productive Series, South Caspian Basin, Azerbaijan. Basin Research, 30(5), 835–862. https://doi.org/10.1111/bre.12283

Adamia, S., Alania, V., Chabukiani, A., Kutelia, Z., & Sadradze, N. (2011a). Great Caucasus (Cavcasioni): A Long-lived North-Tethyan Back-Arc Basin. Turkish Journal of Earth Sciences, 20(5), 611–628. https://doi.org/10.3906/yer-1005-12

Adamia, S., Zakariadze, G., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., & Gventsadze, A. (2011b). Geology of the Caucasus: A Review. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-1005-11

Adamia, Sh. A., Lordkipanidze, M. B., & Zakariadze, G. S. (1977). Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus. Tectonophysics, 40(3), 183–199. https://doi.org/10.1016/0040-1951(77)90065-8

Agustí, J., Vekua, A., Oms, O., Lordkipanidze, D., Bukhsianidze, M., Kiladze, G., & Rook, L. (2009). The Pliocene-Pleistocene succession of Kvabebi (Georgia) and the background to the early human occupation of Southern Caucasus. Quaternary Science Reviews, 28(27–28), 3275–3280. https://doi.org/10.1016/j.quascirev.2009.09.001

Aghayeva, V., Sachsenhofer, R. F., van Baak, C. G. C., Bayramova, Sh., Ćorić, S., Frühwirth, M. J., Rzayeva, E., & Vincent, S. J. (2023). Stratigraphy of the Cenozoic succession in eastern Azerbaijan: Implications for petroleum systems and paleogeography in the Caspian basin. Marine and Petroleum Geology, 150, 106148. https://doi.org/10.1016/j.marpetgeo.2023.106148

Alania, V., Enukidze, O., Glonti, N., Razmadze, A., Chabukiani, A., Giorgadze, A., Glonti, B. V., Koiava, K., Beridze, T., Khutsishvili, S., & Chagelishvili, R. (2018). Structural Architecture of the Kura Foreland Fold-and-thrust Belt Using Seismic Reflection Profile, Georgia. Universal Journal of Geoscience, 6(6), 184–190. https://doi.org/10.13189/ujg.2018.060602

Alania, V. M., Chabukiani, A. O., Chagelishvili, R. L., Enukidze, O. V., Gogrichiani, K. O., Razmadze, A. N., & Tsereteli, N. S. (2017). Growth structures, piggy-back basins and growth strata of the Georgian part of the Kura foreland fold–thrust belt: Implications for Late Alpine kinematic evolution. Geological Society, London, Special Publications, 428(1), 171–185. https://doi.org/10.1144/SP428.5

Ali-Zade, A. A. (2005). Geological Map of Azerbaijan Republic. Scale 1: 500,000 [Geologic Map]. National Academy of Sciences of Azerbaijan Republic Geology Institute, Baku, Azerbaijan.

Ali-Zade, A. A., Alizade, K. A., Aleskerov, D. A., Buleishvili, D. A., Vekua, A. K., Konstantinova, N. A., Lebedeva, K. N. N.-N., Bikiforova, K. V., Pevzner, M. A., Khubka, A. N., Chepalyga, A. I., & Chernyakhovsky, A. G. (1972). Guidebook: Excursions in Moldavia, Georgia, Azerbaijan. (Vol. 105). IUGS Subcommission on Neogene Stratigraphy.

Allen, J. P., Fielding, C. R., Rygel, M. C., & Gibling, M. R. (2013). Deconvolving Signals of Tectonic and Climatic Controls From Continental Basins: An Example From the Late Paleozoic Cumberland Basin, Atlantic Canada. Journal of Sedimentary Research, 83(10), 847–872. https://doi.org/10.2110/jsr.2013.58

Allen, M. B., & Armstrong, H. A. (2008). Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1), 52–58. https://doi.org/10.1016/j.palaeo.2008.04.021

Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23(2), https://doi.org/10.1029/2003TC001530

Allen, M., Jones, S., Ismail-Zadeh, A., Simmons, M., & Anderson, L. (2002). Onset of subduction as the cause of rapid Pliocene-Quaternary subsidence in the South Caspian basin. Geology, 30(9), 775–778. https://doi.org/10.1130/0091-7613(2002)030%3C0775:OOSATC%3E2.0.CO;2

Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. https://doi.org/10.1038/ngeo1087

Avdeev, B., & Niemi, N. A. (2011). Rapid Pliocene exhumation of the central Greater Caucasus constrained by low-temperature thermochronometry: RAPID EXHUMATION OF THE GREATER CAUCASUS. Tectonics, 30(2), https://doi.org/10.1029/2010TC002808

Axen, G. J., Lam, P. S., Grove, M., Stockli, D. F., & Hassanzadeh, J. (2001). Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology, 29(6), 559–562. https://doi.org/10.1130/0091-7613(2001)029<0559:EOTWCA>2.0.CO;2

Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., Friedrich, A., & Tabatabaei, S. H. (2011). Arabia-Eurasia continental collision: Insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geological Society of America Bulletin, 123(1–2), 106–131. https://doi.org/10.1130/B30091.1

Barber, D. E., Stockli, D. F., Horton, B. K., & Koshnaw, R. I. (2018). Cenozoic Exhumation and Foreland Basin Evolution of the Zagros Orogen During the Arabia‐Eurasia Collision, Western Iran. Tectonics, 37(12), 4396–4420. https://doi.org/10.1029/2018TC005328

Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., & Lea, D. W. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237(1), 33–44. https://doi.org/10.1016/j.epsl.2005.06.020

Böhme, M., Spassov, N., Majidifard, M. R., Gärtner, A., Kirscher, U., Marks, M., Dietzel, C., Uhlig, G., El Atfy, H., Begun, D. R., & Winklhofer, M. (2021). Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia. Communications Earth & Environment, 2(1), 85. https://doi.org/10.1038/s43247-021-00158-y

Borisov, A. A., & Halstead, C. A. (1965). Climates of the U.S.S.R (Location Information LSU Library (Main Collection)) [Book]. Aldine Pub. Co.

Boyd, R., Dalrymple, R., & Zaitlin, B. A. (1992). Classification of clastic coastal depositional environments. Sedimentary Geology, 80(3), 139–150. https://doi.org/10.1016/0037-0738(92)90037-R

Brocklehurst, S. H., & Whipple, K. X. (2004). Hypsometry of glaciated landscapes. Earth Surface Processes and Landforms, 29(7), 907–926. https://doi.org/10.1002/esp.1083

Caracciolo, L. (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 209, 103226. https://doi.org/10.1016/j.earscirev.2020.103226

Caracciolo, L., Ravidà, D. C. G., Chew, D., Janßen, M., Lünsdorf, N. K., Heins, W. A., Stephan, T., & Stollhofen, H. (2021). Reconstructing environmental signals across the Permian-Triassic boundary in the SE Germanic Basin: A Quantitative Provenance Analysis (QPA) approach. Global and Planetary Change, 206, 103631. https://doi.org/10.1016/j.gloplacha.2021.103631

Castelltort, S., & Van Den Driessche, J. (2003). How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sedimentary Geology, 157(1), 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6

Connor, S. E., & Kvavadze, E. V. (2009). Modelling late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. Journal of Biogeography, 36(3), 529–545. https://doi.org/10.1111/j.1365-2699.2008.02019.x

Cowgill, E., Forte, A. M., Niemi, N., Avdeev, B., Tye, A., Trexler, C., Javakhishvili, Z., Elashvili, M., & Godoladze, T. (2016). Relict basin closure and crustal shortening budgets during continental collision: An example from Caucasus sediment provenance: Greater Caucasus Relict Basin Closure. Tectonics, 35(12), 2918–2947. https://doi.org/10.1002/2016TC004295

Cromartie, A., Blanchet, C., Barhoumi, C., Messager, E., Peyron, O., Ollivier, V., Sabatier, P., Etienne, D., Karakhanyan, A., Khatchadourian, L., Smith, A. T., Badalyan, R., Perello, B., Lindsay, I., & Joannin, S. (2020). The vegetation, climate, and fire history of a mountain steppe: A Holocene reconstruction from the South Caucasus, Shenkani, Armenia. Quaternary Science Reviews, 246, 106485. https://doi.org/10.1016/j.quascirev.2020.106485

Darin, M. H., & Umhoefer, P. J. (2022). Diachronous initiation of Arabia–Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. International Geology Review, 64(18), 2653–2681. https://doi.org/10.1080/00206814.2022.2048272

de la Vara, A., van Baak, C. G. C., Marzocchi, A., Grothe, A., & Meijer, P. Th. (2016). Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis. Marine Geology, 379, 39–51. https://doi.org/10.1016/j.margeo.2016.05.002

DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8(2), 105–123. https://doi.org/10.1046/j.1365-2117.1996.01491.x

Egan, S. S., Mosar, J., Brunet, M.-F., & Kangarli, T. (2009). Subsidence and uplift mechanisms within the South Caspian Basin: Insights from the onshore and offshore Azerbaijan region. Geological Society, London, Special Publications, 312(1), 219–240. https://doi.org/10.1144/SP312.11

Ershov, A. V., Brunet, M.-F., Nikishin, A. M., Bolotov, S. N., Nazarevich, B. P., & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history and synthesis of subsidence models. Sedimentary Geology, 156(1), 95–118. https://doi.org/10.1016/S0037-0738(02)00284-1

Forte, A. M., Cowgill, E., Bernardin, T., Kreylos, O., & Hamann, B. (2010). Late Cenozoic deformation of the Kura fold-thrust belt, southern Greater Caucasus. Geological Society of America Bulletin, 122(3–4), 465–486. https://doi.org/10.1130/B26464.1

Forte Adam M. (2012). Late Cenozoic Evolution of the Greater Caucasus Mountains and Kura Foreland Basin: Implications for Early Orogenesis - ProQuest. https://www.proquest.com/openview/3db604862ab5a0ffa76603bb287ce0c9/1?pq-origsite=gscholar&cbl=18750

Forte, A. M., & Cowgill, E. (2013a). Late Cenozoic base-level variations of the Caspian Sea: A review of its history and proposed driving mechanisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 392–407. https://doi.org/10.1016/j.palaeo.2013.05.035

Forte, A. M., Cowgill, E., Murtuzayev, I., Kangarli, T., & Stoica, M. (2013b). Structural geometries and magnitude of shortening in the eastern Kura fold-thrust belt, Azerbaijan: Implications for the development of the Greater Caucasus Mountains. Tectonics, 32(3), 688–717. https://doi.org/10.1002/tect.20032

Forte, A. M., Cowgill, E., & Whipple, K. X. (2014). Transition from a singly vergent to doubly vergent wedge in a young orogen: The Greater Caucasus: Greater Caucasus tectonic zonation. Tectonics, 33(11), 2077–2101. https://doi.org/10.1002/2014TC003651

Forte, A. M., Sumner, D. Y., Cowgill, E., Stoica, M., Murtuzayev, I., Kangarli, T., Elashvili, M., Godoladze, T., & Javakhishvili, Z. (2015a). Late Miocene to Pliocene stratigraphy of the Kura Basin, a subbasin of the South Caspian Basin: Implications for the diachroneity of stage boundaries. Basin Research, 27(3), 247–271. https://doi.org/10.1111/bre.12069

Forte, A. M., Whipple, K. X., & Cowgill, E. (2015b). Drainage network reveals patterns and history of active deformation in the eastern Greater Caucasus. Geosphere, 11(5), 1343–1364. https://doi.org/10.1130/GES01121.1

Forte, A. M., Whipple, K. X., Bookhagen, B., & Rossi, M. W. (2016). Decoupling of modern shortening rates, climate, and topography in the Caucasus. Earth and Planetary Science Letters, 449, 282–294. https://doi.org/10.1016/j.epsl.2016.06.013

Forte, A. M., Gutterman, K. R., Soest, M. C., & Gallagher, K. (2022a). Building a Young Mountain Range: Insight Into the Growth of the Greater Caucasus Mountains From Detrital Zircon (U‐Th)/He Thermochronology and 10Be Erosion Rates. Tectonics, 41(5). https://doi.org/10.1029/2021TC006900

Forte, A. M., Leonard, J. S., Rossi, M. W., Whipple, K. X., Heimsath, A. M., Sukhishvili, L., Godoladze, T., & Kadirov, F. (2022b). Low variability runoff inhibits coupling of climate, tectonics, and topography in the Greater Caucasus. Earth and Planetary Science Letters, 584, 117525. https://doi.org/10.1016/j.epsl.2022.117525

Forte, A. M., Cowgill, E., Sumner, D., Garello, D., Niemi, N., & Fowler, K. (2023). Timing and Evolution of Structures within the Southeastern Greater Caucasus and Kura Fold-Thrust Belt from Multiproxy Sediment Provenance Records [Preprint]. Earth Sciences. https://doi.org/10.31223/X5996K

Gobejishvili, R., Lomidze, N., & Tielidze, L. (2011). Chapter 12—Late Pleistocene (Würmian) Glaciations of the Caucasus. In J. Ehlers, P. L. Gibbard, & P. D. Hughes (Eds.), Developments in Quaternary Sciences (Vol. 15, pp. 141–147). Elsevier. https://doi.org/10.1016/B978-0-444-53447-7.00012-X

Green, T., Abdullayev, N., Hossack, J., Riley, G., & Roberts, A. M. (2009). Sedimentation and subsidence in the South Caspian Basin, Azerbaijan. Geological Society, London, Special Publications, 312(1), 241–260. https://doi.org/10.1144/SP312.12

Gunnels, M., Yetrimishli, G., Kazimova, S., & Sandvol, E. (2020). Seismotectonic evidence for subduction beneath the Eastern Greater Caucasus. Geophysical Journal International, 224(3), 1825–1834. https://doi.org/10.1093/gji/ggaa522

Heller, P. L., & Paola, C. (1992). The large-scale dynamics of grain-size variation in alluvial basins, 2: Application to syntectonic conglomerate. Basin Research, 4(2), 91–102. https://doi.org/10.1111/j.1365-2117.1992.tb00146.x

Hinds, D. J., Aliyeva, E., Allen, M. B., Davies, C. E., Kroonenberg, S. B., Simmons, M. D., & Vincent, S. J. (2004). Sedimentation in a discharge dominated fluvial-lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 21(5), 613–638. https://doi.org/10.1016/j.marpetgeo.2004.01.009

Hoyle, T. M., Leroy, S. A. G., López-Merino, L., & Richards, K. (2018). Using fluorescence microscopy to discern in situ from reworked palynomorphs in dynamic depositional environments—An example from sediments of the late Miocene to early Pleistocene Caspian Sea. Review of Palaeobotany and Palynology, 256, 32–49. https://doi.org/10.1016/j.revpalbo.2018.05.005

Hoyle, T. M., Leroy, S. A. G., López-Merino, L., van Baak, C. G. C., Martínez Cortizas, A., Richards, K., & Aghayeva, V. (2021). Biological turnovers in response to marine incursion into the Caspian Sea at the Plio-Pleistocene transition. Global and Planetary Change, 206, 103623. https://doi.org/10.1016/j.gloplacha.2021.103623

Hoyle, T. M., Leroy, S. A. G., Lόpez-Merino, L., Miggins, D. P., & Koppers, A. A. P. (2020). Vegetation succession and climate change across the Plio-Pleistocene transition in eastern Azerbaijan, central Eurasia (2.77–2.45 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109386. https://doi.org/10.1016/j.palaeo.2019.109386

Hsü, K. J., Montadert, L., Bernoulli, D., Cita, M. B., Erickson, A., Garrison, R. E., Kidd, R. B., Mèlierés, F., Müller, C., & Wright, R. (1977). History of the Mediterranean salinity crisis. Nature, 267(5610), 399–403. https://doi.org/10.1038/267399a0

Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the South Caspian Basin. Geophysical Journal International, 148(2), 214–245. https://doi.org/10.1046/j.1365-246X.2002.01588.x

Jones, R. W., & Simmons, M. D. (1997). A review of the stratigraphy of eastern Paratethys (Oligocene-Holocene), with particular emphasis on the Black Sea. AAPG Memoir, 68, 39–51.

Jorissen, E. (2020). The Pontocaspian basins in a grain of sand: Coastal sedimentary architecture, forcing mechanisms, and faunal turnover events in restricted basins. Utrecht Studies in Earth Sciences, 209. https://dspace.library.uu.nl/handle/1874/396683

Jorissen, E. L., Abels, H. A., Wesselingh, F. P., Lazarev, S., Aghayeva, V., & Krijgsman, W. (2020). Amplitude, frequency and drivers of Caspian Sea lake‐level variations during the Early Pleistocene and their impact on a protected wave‐dominated coastline. Sedimentology, 67(1), 649–676. https://doi.org/10.1111/sed.12658

Kadirov, F., Floyd, M., Alizadeh, A., Guliev, I., Reilinger, R., Kuleli, S., King, R., & Nafi Toksoz, M. (2012). Kinematics of the eastern Caucasus near Baku, Azerbaijan. Natural Hazards, 63(2), 997–1006. https://doi.org/10.1007/s11069-012-0199-0

Koçyiğit, A., Yilmaz, A., Adamia, S., & Kuloshvili, S. (2001). Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14(1–3), 177–195. https://doi.org/10.1080/09853111.2001.11432443

Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., & Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400(6745), 652–655. https://doi.org/10.1038/23231

Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C. G. C., Agustí, J., Alçiçek, M. C., Aliyeva, E., Bista, D., Bruch, A., Büyükmeriç, Y., Bukhsianidze, M., Flecker, R., Frolov, P., Hoyle, T. M., Jorissen, E. L., Kirscher, U., Koriche, S. A., Kroonenberg, S. B., Lordkipanidze, D., Oms, O., Rausch, L., Singarayer, J., Stoica, M., van de Velde, S., Titov, V. V., & Wesselingh, F. P. (2019). Quaternary time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution. Earth-Science Reviews, 188, 1-40. https://doi.org/10.1016/j.earscirev.2018.10.013

Kroonenberg, S. B., Alekseevski, N. I., Aliyeva, E., Allen, M. B., Aybulatov, D. N., Baba-Zadeh, A., Badyukova, E. N., Davies, C. E., Hinds, D. J., Hoogendoorn, R. M., Huseynov, D., Ibrahimov, B., Mamedov, P., Overeem, I., Rusakov, G. V., Suleymanova, S., Svitoch, A. A., & Vincent, S. J. (2005). Two Deltas, Two Basins, One River, One Sea: The Modern Volga Delta as an Analogue of the Neogene Productive Series, South Caspian Basin. https://doi.org/10.2110/pec.05.83.0231

Lazarev, S., Jorissen, E. L., van de Velde, S., Rausch, L., Stoica, M., Wesselingh, F. P., Van Baak, C. G. C., Yanina, T. A., Aliyeva, E., & Krijgsman, W. (2019). Magneto-biostratigraphic age constraints on the palaeoenvironmental evolution of the South Caspian basin during the Early-Middle Pleistocene (Kura basin, Azerbaijan). Quaternary Science Reviews, 222, 105895. https://doi.org/10.1016/j.quascirev.2019.105895

Lazarev, S., Kuiper, K. F., Oms, O., Bukhsianidze, M., Vasilyan, D., Jorissen, E. L., Bouwmeester, M. J., Aghayeva, V., van Amerongen, A. J., Agustí, J., Lordkipanidze, D., & Krijgsman, W. (2021). Five-fold expansion of the Caspian Sea in the late Pliocene: New and revised magnetostratigraphic and 40Ar/39Ar age constraints on the Akchagylian Stage. Global and Planetary Change, 206, 103624. https://doi.org/10.1016/j.gloplacha.2021.103624

Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). https://doi.org10.1029/2004pa001071

Lydolph, P. E. (1977). Climates of the Soviet Union. Elsevier Scientific Pub. Co.

McKenzie, D., Jackson, J., & Priestley, K. (2019). Continental collisions and the origin of subcrustal continental earthquakes. Canadian Journal of Earth Sciences, 56(11), 1101–1118. https://doi.org/10.1139/cjes-2018-0289

Milanovsky, E. E. (2008). Origin and development of ideas on Pliocene and Quaternary glaciations in northern and eastern Europe, Iceland, Caucasus and Siberia. Geological Society, London, Special Publications, 301(1), 87–115. https://doi.org/10.1144/SP301.6

Morton, A., Allen, M., Simmons, M., Spathopoulos, F., Still, J., Hinds, D., Ismail‐Zadeh, A., & Kroonenberg, S. (2003). Provenance patterns in a neotectonic basin: Pliocene and Quaternary sediment supply to the South Caspian. Basin Research, 15(3), 321–337. https://doi.org/10.1046/j.1365-2117.2003.00208.x

Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M.-F., & Sosson, M. (2010). Cenozoic-Recent tectonics and uplift in the Greater Caucasus: A perspective from Azerbaijan. Geological Society, London, Special Publications, 340(1), 261–280. https://doi.org/10.1144/SP340.12

Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., & Zahirovic, S. (2018). GPlates: Building a Virtual Earth Through Deep Time. Geochemistry, Geophysics, Geosystems, 19(7), 2243–2261. https://doi.org/10.1029/2018GC007584

Nemčok, M., Glonti, B., Yukler, A., & Marton, B. (2013). Development history of the foreland plate trapped between two converging orogens; Kura Valley, Georgia, case study. Geological Society, London, Special Publications, 377(1), 159–188. https://doi.org/10.1144/SP377.9

Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin Research, 4(2), 73–90. https://doi.org/10.1111/j.1365-2117.1992.tb00145.x

Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161(1), 1–21. https://doi.org/10.1016/0040-1951(89)90297-7

Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1), 91–106. https://doi.org/10.1016/j.palaeo.2006.03.020

Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., Krijgsman, W., Moore, T., Raine, I., Sardella, R., & Vernyhorova, Y. V. (2020). Chapter 29—The Neogene Period. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), Geologic Time Scale 2020 (pp. 1141–1215). Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00029-2

Ravidà, D. C. G., Caracciolo, L., Heins, W. A., & Stollhofen, H. (2021). Reconstructing environmental signals across the Permian-Triassic boundary in the SE Germanic basin: Paleodrainage modelling and quantification of sediment flux. Global and Planetary Change, 206, 103632. https://doi.org/10.1016/j.gloplacha.2021.103632

Reynolds, A. D., Simmons, M. D., Bowman, M. B. J., Henton, J., Brayshaw, A. C., Ali-Zade, A. A., Guliyev, I. S., Suleymanova, S. F., Ateava, E. Z., Mamedova, D. N., & Koshkarly, O. (1998). Implications of Outcrop Geology for Reservoirs in the Neogene Productive Series: Apsheron Peninsula, Azerbaijan. AAPG Bulletin, 82(1), 25–49. https://doi.org/10.1306/1D9BC38B-172D-11D7-8645000102C1865D

Richards, K., van Baak, C. G. C., Athersuch, J., Hoyle, T. M., Stoica, M., Austin, W. E. N., Cage, A. G., Wonders, A. A. H., Marret, F., & Pinnington, C. A. (2018). Palynology and micropalaeontology of the Pliocene - Pleistocene transition in outcrop from the western Caspian Sea, Azerbaijan: Potential links with the Mediterranean, Black Sea and the Arctic Ocean? Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 119–143. https://doi.org/10.1016/j.palaeo.2018.07.018

Richards, K., Vincent, S. J., Davies, C. E., Hinds, D. J., & Aliyeva, E. (2021). Palynology and sedimentology of the Pliocene Productive Series from eastern Azerbaijan. Palynology, 45(4), 569–598. https://doi.org/10.1080/01916122.2021.1884139

Rögl, F. (1999). Mediterranean and Paratethys; facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica: International Geological Journal, 50(4), 339–349.

Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012

Stevens Goddard, A., Carrapa, B., & Aciar, R. H. (2020). Recognizing drainage reorganization in the stratigraphic record of the Neogene foreland basin of the Central Andes. Sedimentary Geology, 405, 105704. https://doi.org/10.1016/j.sedgeo.2020.105704

Sukhishvili, L., Forte, A. M., Merebashvili, G., Leonard, J., Whipple, K. X., Javakhishvili, Z., Heimsath, A., & Godoladze, T. (2021). Active deformation and Plio-Pleistocene fluvial reorganization of the western Kura fold–thrust belt, Georgia: Implications for the evolution of the Greater Caucasus Mountains. Geological Magazine, 158(4), 583–597. https://doi.org/10.1017/S0016756820000709

Tari, G., Blackbourn, G., Boote, D. r. d., Sachsenhofer, R. f., & Yukler, A. (2021). Exploration Plays in the Caucasus Region. Journal of Petroleum Geology, 44(3), 213–236. https://doi.org/10.1111/jpg.12791

Tofelde, S., Bernhardt, A., Guerit, L., & Romans, B. W. (2021). Times Associated With Source-to-Sink Propagation of Environmental Signals During Landscape Transience. Frontiers in Earth Science, 9. https://www.frontiersin.org/article/10.3389/feart.2021.628315

Trexler, C., Cowgill, E., Niemi, N. A., Vasey, D. A., & Godoladze, T. (2022). Tectonostratigraphy and major structures of the Georgian Greater Caucasus: Implications for structural architecture, along-strike continuity, and orogen evolution. Geosphere, 18(1), 211–240. https://doi.org/10.1130/GES02385.1

Trexler, C., Cowgill, E., Vasey, D., & Niemi, N. (2023). Total Shortening Estimates Across the Western Greater Caucasus Mountains from Balanced Cross Sections and Area Balancing. Tektonika, 1(2). https://doi.org/10.55575/tektonika2023.1.2.50

Tye, A. R., Niemi, N. A., Cowgill, E., Kadirov, F. A., & Babayev, G. R. (2022). Diverse Deformation Mechanisms and Lithologic Controls in an Active Orogenic Wedge: Structural Geology and Thermochronometry of the Eastern Greater Caucasus. Tectonics, 41(12). https://doi.org/10.1029/2022TC007349

Tye, A. R., Niemi, N. A., Safarov, R. T., Kadirov, F. A., & Babayev, G. R. (2020). Sedimentary response to a collision orogeny recorded in detrital zircon provenance of Greater Caucasus foreland basin sediments. Basin Research, bre.12499. https://doi.org/10.1111/bre.12499

Van Baak, C. G. C., Grothe, A., Richards, K., Stoica, M., Aliyeva, E., Davies, G. R., Kuiper, K. F., & Krijgsman, W. (2019). Flooding of the Caspian Sea at the intensification of Northern Hemisphere Glaciations. Global and Planetary Change, 174, 153–163. https://doi.org/10.1016/j.gloplacha.2019.01.007

Van Baak, C. G. C., Krijgsman, W., Magyar, I., Sztanó, O., Golovina, L. A., Grothe, A., Hoyle, T. M., Mandic, O., Patina, I. S., Popov, S. V., Radionova, E. P., Stoica, M., & Vasiliev, I. (2017). Paratethys response to the Messinian salinity crisis. Earth-Science Reviews, 172, 193–223. https://doi.org/10.1016/j.earscirev.2017.07.015

Van Baak, C. G. C., Radionova, E. P., Golovina, L. A., Raffi, I., Kuiper, K. F., Vasiliev, I., & Krijgsman, W. (2015). Messinian events in the Black Sea. Terra Nova, 27(6), 433–441. https://doi.org/10.1111/ter.12177

Van Baak, C. G. C., Vasiliev, I., Stoica, M., Kuiper, K. F., Forte, A. M., Aliyeva, E., & Krijgsman, W. (2013). A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Global and Planetary Change, 103, 119–134. https://doi.org/10.1016/j.gloplacha.2012.05.004

van der Boon, A., van Hinsbergen, D. J. J., Rezaeian, M., Gürer, D., Honarmand, M., Pastor-Galán, D., Krijgsman, W., & Langereis, C. G. (2018). Quantifying Arabia–Eurasia convergence accommodated in the Greater Caucasus by paleomagnetic reconstruction. Earth and Planetary Science Letters, 482, 454–469. https://doi.org/10.1016/j.epsl.2017.11.025

van Hinsbergen, D. J. J., Trond, T. H., Schmid, S. M., Mat¸enco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009

Vasiliev, I., van der Meer, M. T. J., Stoica, M., Krijgsman, W., Reichart, G.-J., Lazarev, S., Butiseacă, G. A., Niedermeyer, E. M., Aliyeva, E., van Baak, C. G. C., & Mulch, A. (2022). Biomarkers reveal two paramount Pliocene-Pleistocene connectivity events in the Caspian Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 587, 110802. https://doi.org/10.1016/j.palaeo.2021.110802

Vezzoli, G., Garzanti, E., Limonta, M., & Radeff, G. (2020). Focused erosion at the core of the Greater Caucasus: Sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth-Science Reviews, 200, 102987. https://doi.org/10.1016/j.earscirev.2019.102987

Vincent, S. J., Davies, C. E., Richards, K., & Aliyeva, E. (2010). Contrasting Pliocene fluvial depositional systems within the rapidly subsiding South Caspian Basin; a case study of the palaeo-Volga and palaeo-Kura river systems in the Surakhany Suite, Upper Productive Series, onshore Azerbaijan. Marine and Petroleum Geology, 27(10), 2079–2106. https://doi.org/10.1016/j.marpetgeo.2010.09.007

Vincent, S. J., Somin, M. L., Carter, A., Vezzoli, G., Fox, M., & Vautravers, B. (2020). Testing Models of Cenozoic Exhumation in the Western Greater Caucasus. Tectonics, 39(2), e2018TC005451. https://doi.org/10.1029/2018TC005451

Zonenshain, L. P., & Pichon, X. (1986). Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics, 123(1), 181–211. https://doi.org/10.1016/0040-1951(86)90197-6

Paleogeographic map of the Kura Basin

Downloads

Published

10-07-2024 — Updated on 12-07-2024

Section

Publications

Categories

How to Cite

Fowler, K., & Forte, A. M. (2024). Distinguishing climate and tectonic signals in the stratigraphy of the Kura Basin, the southeastern foreland of the Greater Caucasus. Sedimentologika, 2(1). https://doi.org/10.57035/journals/sdk.2024.e21.1272