# AI334, AQ806, AR222, AR249, AS274, AS702, AS708, RB590, RB591 and RB596 antibodies recognize the spike S protein from SARS-CoV-2 by western blot

Anna Marchetti<sup>1</sup>, Frederic Zenhausern<sup>2,3</sup>

Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva, Switzerland
Center for Applied NanoBioscience and Medicine, The University of Arizona, Phoenix, AZ 85004, USA
School of Pharmaceutical Sciences, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva, Switzerland

#### Abstract

The recombinant antibodies AI334, AQ806, AR222, AR249, AS274, AS702, AS708, RB590, RB591 and RB596 detect by western blot the spike S protein from SARS-CoV-2.

## Introduction

The spike (S) glycoprotein mediates attachment of coronaviruses to the host ACE2 receptor and fusion with the host cell membrane (Yan *et al.*, 2020). Ten recombinant antibodies (AI334, AQ806, AR222, AR249, AS274, AS702, AS708, RB590, RB591 and RB596) successfully detect by western blot the spike S protein from SARS-CoV-2 (UniProt P0DTC2) expressed in Vero-B4 cells.

## **Materials & Methods**

**Antibodies:** ABCD AI334, ABCD AQ806, ABCD AR249, ABCD AR222, ABCD AS274, ABCD AS702, ABCD AS708, ABCD RB590, ABCD\_RB591 and ABCD\_RB596 antibodies (ABCD nomenclature, https://web.expasy.org/abcd/) produced the Geneva Antibody by **Facility** (http://www.unige.ch/medecine/antibodies/) as antibodies with the antigen-binding portion fused to a mouse IgG2A Fc. The synthesized scFv or VHH sequences (GeneArt, Invitrogen) correspond to the sequences of the variable regions joined by a peptide linker (GGGGS)<sub>3</sub> (see Table 1 for clone names and references). HEK 293T suspension cells (growing in FreeStyle™ 293 Expression Medium, Gibco 12338) were transiently transfected with the vector coding for the scFv-Fc or VHH-Fc of each antibody. Supernatants (see Table 1 for individual yields) were collected after 4 days.

**Table 1**: Clone number, epitope, reference and production yields for the antibodies used in this study.

| ABCD  | Clone  | Epitope   | Reference                  | Yield<br>(mg/L) |
|-------|--------|-----------|----------------------------|-----------------|
| AI334 | CR3022 | S1        | ter Meulen et al., 2006    | 50              |
| AQ806 | VHH-72 | S1/RBD    | Wrapp et al., 2020         | 50              |
| AR222 | Sb#14  | S1/RBD    | Walter et al., 2020        | 60              |
| AR249 | Sb#45  | S1/RBD    | Walter et al., 2020        | 100             |
| AS274 | H4     | S1/RBD    | Wu et al., 2020            | 20              |
| AS702 | CV24   | S1        | Seydoux et al., 2020       | 20              |
| AS708 | CV30   | S1/RBD    | Seydoux et al., 2020       | 20              |
| RB590 | RB590  | Cytosolic | this work                  | 50              |
| RB591 | RB591  | Cytosolic | this work                  | 120             |
| RB596 | RB596  | S2        | Farrera-Soler et al., 2020 | 100             |

Antigen: Vero-B4 adherent cells (growing in DMEM, Gibco 31966021, supplemented with 10% FBS), transiently transfected 2 days before the experiment with a vector coding for the full-length SARS-CoV-2 S protein (BEI Resources, NR-52310, pCAGGS vector containing the full-length SARS-CoV-2/Wuhan-Hu-1 S glycoprotein coding sequence), were used to detect the full-length S protein. Non-transfected cells were used as a negative control.

**Protocol:** 5x10<sup>6</sup> cells were pelleted and lysed for 15 min in 100 µL of ice-cold lysis buffer (25 mM Tris-HCl pH 7.4 + 0.5 % Triton X-100 + 120 mM NaCl) containing protease inhibitors. Lysate was centrifuged 15 min, 10'000 g at 4 °C to remove nuclei. One volume of reduced sample buffer was added to the lysate (20.6% (w/v) sucrose, 100 mM Tris pH 6.8, 10 mM EDTA, 0.1% (w/v) bromophenol blue, 4% (w/v) SDS, 6% (v/v) β-mercaptoethanol) and boiled for 15 min at 95 °C. 10 µL of each sample (2.5x10<sup>5</sup> cells) was migrated (150 V, 45 min) in a 4-20% acrylamide gel (Genscript, SurePAGE Bis-Tris, M00655), and transferred to a nitrocellulose membrane using a dry transfer system for 7 minutes (iBlot gel transfer device, Invitrogen IB23001). The membranes were blocked during 60 min in PBS containing 0.1% (v/v) Tween20 and 7% (w/v) milk, and washed once for 15 minutes in PBS + 0.1% (v/v) Tween20 (PBS-Tween). The membranes were then incubated overnight at RT with the anti-S antibodies (final concentration 5 mg/L in PBS-Tween). The membranes were then washed three times (15+15+10 min) in PBS-Tween, incubated for 1 hour with the horseradish peroxidase-coupled goat anti-mouse IgG (Biorad, 170-6516, dilution 1:3000) and washed three times (15 min) in PBS-Tween. The signal was revealed by enhanced chemiluminescence (ECL) (Amersham Biosciences) using a PXi-4 gel imaging systems (Syngene).

# Results

AI334, AQ806, AR222, AR249, AS274, AS702, AS708, RB590, RB591 and RB596 antibodies specifically recognize the S protein in Vero-B4 transfected cells (Fig. 1). The ~180 kDa and the ~90 kDa bands correspond to the full-length and cleaved S proteins; higher molecular weight bands (>250 kDa) correspond to oligomerized (dimeric or trimeric) S proteins (Ou *et al.*, 2020). The AI334 antibody also recognizes a non-specific band (~250 kDa) on non-transfected cells (Fig. 1).



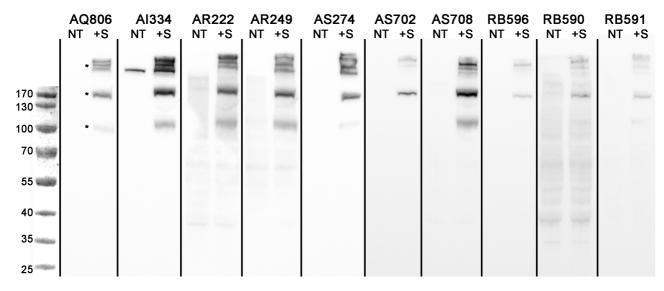



Fig. 1. Antibodies A1334, AQ806, AR222, AR249, AS274, AS702, AS708, RB590, RB591 and RB596 specifically recognize the spike S protein from SARS-CoV-2 (the asterisks (\*) denote the main forms of the protein: cleaved, full-length, and oligomerized; shown only for AQ806).

## References

Farrera-Soler L, Daguer JP, Sofia Badiola B, Winssinger N. The RB596 antibody recognizes a linear epitope from the spike S protein from SARS-CoV-2. Antibody Reports, 2020, 3:e232. doi:10.22450/journals/abrep.2020.e232

Ou X, Liu Y, Lei X, *et al.* Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020; 11:1620. PMID: 32221306

Seydoux E, Homad LJ, MacCamy AJ, *et al.* Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity 2020; 53:1-8. PMID: 32561270.

ter Meulen J, van den Brink EN, Poon LL, *et al.* Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006; 3:e237. PMID:16796401

Walter JD, Hutter CAJ, Zimmermann I, *et al.* Sybodies targeting the SARS-CoV-2 receptor-binding domain. Preprint. bioRxiv 2020; 2020.04.16.045419. doi:10.1101/2020.04.16.045419

Wrapp D, De Vlieger D, Corbett KS, *et al.* Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181:1004-1015. PMID:32375025

Wu Y, Wang F, Shen C, *et al.* A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020; 368:1274-1278. PMID:32404477

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367:1444-1448. PMID:32132184

# Acknowledgments

This work was co-sponsored by NASA TRISH contract #NNX16A069A/CAT0001. The following reagent was obtained through BEI Resources, NIAID, NIH: Vector pCAGGS containing the SARS-related Coronavirus 2, Wuhan-Hu-1 Spike glycoprotein gene, NR-52310.

## **Conflict of interest**

The authors declare no conflict of interest.

