Two hits in one – the neurobiology of schizophrenia

Authors

DOI:

https://doi.org/10.25250/thescbr.brk669

Keywords:

psychiatric genetics, schizophrenia, pathobiology, neurodevelopment, stem cell differentiation

Abstract

Schizophrenia is widely thought to involve the disruption of both early and late phases of brain development – the so-called ‘two-hit’ hypothesis – but what is the biology behind these two hits? Studying genetic changes contributing to risk for the disorder, we uncovered surprising links between the biological pathways involved in early and late hits.

Author Biography

Andrew Pocklington, Cardiff University

Senior Lecturer

Original article reference

Sanders, B., D’Andrea, D., Collins, M. O., Rees, E., Steward, T. G. J., Zhu, Y., Chapman, G., Legge, S. E., Pardiñas, A. F., Harwood, A. J., Gray, W. P., O’Donovan, M. C., Owen, M. J., Errington, A. C., Blake, D. J., Whitcomb, D. J., Pocklington, A. J., & Shin, E. (2022). Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications, 13(1), 27. https://doi.org/10.1038/s41467-021-27601-0

Downloads

Published

2023-01-30

Issue

Section

Neurobiology