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Abstract

Normal fault growth models are largely based on the geometric relationship between
fault displacement and length, and the seismically imaged record of accommodation
development contained within syn-rift strata. Here, we infer variations in the style of
normal fault growth across poorly exposed faulted margins through sedimentological
and stratigraphic analysis of the syn-rift deposits. We analyze the along-strike
variability of normal-fault controlled deltaic systems to infer the evolution of the
basin-margin fault system. The geometry and displacement patterns are constrained.
The Crati Basin (southern Italy) contains Pleistocene syn-rift deposits exposed in
the hanging wall of a c. 45km-long normal fault system. We show that during
the early extensional phase, shelf-type deltas were deposited along the entire
strike length of the fault system, suggestive of relatively shallow-water deposits
and early establishment of the fault. The later extensional phase resulted in the
deposition of Gilbert-type deltas at the center and towards the northern end of
the fault system, whereas shelf-type deltas persisted near the southern tip of the
system. This stratigraphic evolution records the transition to a period when the
fault system growth was characterized by displacement accumulation rather than
lengthening. We show that the detailed sedimentological and stratigraphic analysis
of exposed ancient deltaic systems can be used to discriminate between models
for normal fault growth. Furthermore, displacement and accommodation variations
along normal faults control the styles and depositional architecture of deltaic systems
in extensional settings. Results have important implications for interpreting basin-
margin architectures and for predicting stratigraphic patterns in active extensional
settings.
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Martinez et al. Fault-controlled deltaic systems

Plain language summary

Normal fault growth is affected by the amount of fault displacement and how this displacement is distributed
along the length of the fault. Along-strike displacement controls the way in which space is created to allow
the deposition of sediments, leading to the development of normal fault-controlled deposits. These deposit
characteristics (e.g., thickness variation, stratigraphic and depositional architecture, facies distribution) are used
to constrain phases of fault activity and fault growth models. This study analyzes fault-controlled deltaic systems
related to a poorly exposed faulted margin. We aim to infer the evolution of the faulted margin based on
the stratigraphic and along-strike variability of normal fault-controlled deposits. We show that the analysis of
stratigraphic and architectural variability in normal-fault deltaic systems provides important information about
the spatial and temporal evolution of normal fault systems. This approach is particularly useful along fault systems
that are poorly exposed.

Riassunto

I modelli di crescita delle faglie normali si basano in gran parte sulla relazione geometrica tra rigetto e lunghezza
della faglia, e sulla geometria dei depositi di sin-rift in risposta alla creazione di spazio. In questo lavoro,
ricostruiamo variazioni nello stile di crescita delle faglie normali in margini poco esposti in affioramento attraverso
I'analisi sedimentologica e stratigrafica dei depositi di sin-rift. Analizziamo la variabilita lungo la faglia dei sistemi
deltizi per comprendere l'evoluzione del sistema di faglie. Il Bacino del Crati (Arco Calabro) contiene depositi
di sin-rift pleistoceni esposti lungo il margine di un sistema di faglie normali lungo c. 45 km. In questo lavoro
osserviamo che durante la fase estensionale iniziale, delta di tipo shelf si sono depositati, lungo l'intera lunghezza
della faglia, in acque relativamente poco profonde. La successiva fase estensionale ha portato alla deposizione
di delta di tipo Gilbert al centro e verso l'estremita settentrionale del sistema, mentre la deposizione di delta
di tipo shelf & continuata in prossimita dell'estremita meridionale. Questa evoluzione stratigrafica registra la
transizione ad un periodo in cui la crescita del sistema di faglie era caratterizzata da alti tassi di rigetto verticale. In
questo lavoro, dimostriamo che I'analisi sedimentologica e stratigrafica dettagliata di antichi sistemi deltizi esposti
puo essere utilizzata per comprendere i modelli di crescita di faglie normali. Inoltre, in contesti estensionali le
variazioni di rigetto e accomodamento lungo faglie normali controllano lo stile e I'architettura deposizionale dei
sistemi deltizi.

wave, tide, river; Ainsworth et al., 2011; Galloway,
1975; Hampson & Howell, 2017) or their tectono-
geomorphic setting (e.g., shelf-, slope-, and Gilbert-
type deltas; Ethridge & Wescott, 1984). In this study,
we analyzed fault-controlled deltaic systems using the
BSG (Base-of-scarp, Shoal-water/shelf-type, Gilbert-
type deltas) ternary diagram proposed by Chiarella et
al. (2021). This diagram describes three end-members
of base-of-scarp (B) deltas, shoal-water/shelf-type (S)
deltas and Gilbert-type (G) deltas. The classification
proposed by Chiarella et al. (2021) is based on
the morphological stability of the deposits and
throw of the controlling fault. These fault-controlled
systems (B, S, and G) are thought to evolve from
unsteady (B) to steady-state (S and G) conditions
(sensu Chiarella et al., 2021; Prior & Bornhold, 1988).
This change can be recorded by the transition from
stratigraphically disorganized, texturally immature

1 Introduction

Many studies have used thickness variations, strati-
graphic architecture, and facies distribution within syn-
rift strata to constrain phases of fault activity (e.g., Bell
etal., 2009; Gawthorpe, Jackson, et al., 2003; Henstra et
al., 2016; Martinez et al., 2024; Young et al., 2003), and
growth models for normal faults (e.g., Bell et al., 2009;
Gawthorpe, Jackson, et al., 2003; Gupta et al., 1999;
Jackson et al., 2002, 2017; Young et al., 2002). Fault-
controlled deltaic systems may develop during rifting
(Barrett et al., 2019; Colella, 1988; Ford et al., 2013), and
their facies types and stacking patterns, for example,
can provide a record of spatial and temporal variations
in fault total displacement and slip rates, and overall
patterns of syn-rift subsidence (e.g., Backert et al,,
2010; Dorsey et al., 1995; Ford et al., 2013; Gawthorpe,
Hardy, et al., 2003; Hardy & Gawthorpe, 1998).

The most used classifications for deltaic systems
are based on the dominant delta front regime (i.e.,

base-of-scarp (B) to more organized, texturally mature
shelf- or Gilbert-type deltas (S or G; Chiarella et al.,
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Figure 1 - (A) Schematic map displaying Plio-Pleistocene block-segmentation of the Calabrian Arc. Major geological entities are
highlighted in light yellow (e.g., Crati, Crotone, Catanzaro, Siderno basins). Modified after Chiarella et al. (2021). (B) Schematic
geological map of the Crati Basin. Studied sectors (i.e., northern, central, and southern) are highlighted, as well as the faulted
areas that serve as the eastern and western margins of the Crati Basin. Modified after Colella (1988).

2021, Figure 2). Shelf- and Gilbert-type deltas differ
in their architecture: Gilbert-type deltas display a
tripartite architecture (i.e., topset, foreset, bottomset),
whereas shelf-type deltas are characterized by a
simpler, subhorizontal, and laterally continuous strata
pattern and a lack of any evident clinoform stratal
geometry. The development of either system under
steady-state conditions is controlled by the amount
of relief across the basin-bounding fault, or more
specifically, accommodation generated in the hanging
wall. Low accommodation favors the development of
low-relief and gently inclined shelf-type deltas, and
high accommodation produces high-relief, tripartite
Gilbert-type systems.

Our study area is located in the Crati Basin, southern
Italy (Figure 1A), which is bounded to the west and
east by N-S-striking normal faults (Figure 1B) that
have been active since the Early-Middle Pleistocene

(Robustelli & Muto, 2017; Spina et al., 2011). This study
analyzes Pleistocene deposits that accumulated on the
eastern margin of the Crati Basin (Figure 1), which has
been characterized by an increase in displacement rate

across the central sector since the Middle Pleistocene
(Spina et al., 2011).

Our objective is to determine the stratigraphical
and architectural variability of Pleistocene fault-
controlled shelf- and Gilbert-type deltas (Colella et
al., 1987; Colella, 1988; Fabbricatore et al., 2014),
and to use these to infer the relative temporal
and spatial evolution of the faulted margin. The
analyzed depositional systems accumulated during
the same phase of basin evolution (i.e., Middle to
Late Pleistocene) based on biostratigraphic data from
Colella et al. (1987) and Fabbricatore (2011), and in
response to similar sedimentation rates (Fabbricatore
et al., 2014; Young & Colella, 1988).
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2 Material and Methods

The study area was divided into three sectors (i.e.,
southern, central, and northern; Figure 1B), within
which we analyzed thirty-nine exposed sections
(Supplementary Material 1). The sedimentary analysis
comprised: (i) the description of depositional archi-
tecture, with emphasis on external geometry, layer
architecture, and arrangement of the sedimentary
structures; (ii) sedimentary logging; and (iii) facies anal-
ysis, including descriptions of sedimentary structures,
textures, grading, color, etc. Mudstone-dominated
prodelta deposits have not been investigated in
detail because they are not particularly exposed and
mostly preserved below present-day fluvial deposits
of the Crati River. Moreover, these deposits are
not diagnostic of delta architecture, nor are they
indicative of the evolution of the bounding fault. Due
to the lack of continuity between outcrops over large
distances, we used their location (i.e., Geographical
Coordinate System) and altitude (i.e., elevation above
sea level) to relate their stratigraphic positions and to
correlate sedimentary logs. We consider this approach
valid because regional post-depositional uplift across
central Calabria was broadly uniform over the last
3 million years with no internal deformation of the
basin fill (Quye-Sawyer et al., 2021).

3 Geological Background

The Crati Basin forms part of the northern sector
of the Calabrian Arc, a continental fragment thrust
onto Mesozoic and Tertiary sediments (Butler et al.,
2004; Figure 1A) during the collision of the African
(Adriatic plate) and Eurasian plates (Patacca et al.,
1990). This process formed the Tyrrhenian-Ionian sub-
duction system, with the Ionian oceanic lithosphere
subducting under the Eurasian plate (Guarnieri, 2006).
Subduction led to back-arc extension, the opening
of the Tyrrhenian Basin (Magni et al., 2014), and the
rapid SE migration and fragmentation of the Calabrian
Arc into NW-trending, internally sheared blocks (e.g.,
Crotone, Catanzaro, Siderno Basins). The Calabrian Arc
is separated from the adjacent northern Apennines
and southern Maghrebide segments (Bonardi et al.,
2005; Spina et al., 2011) by two major NW-SE-striking
shear zones (Figure 1A): the sinistral Pollino Line to the
north (Busquet & Gueremy, 1969; Turco et al., 1990;
Wortel & Spakman, 1993) and the dextral Taormina
Line to the south (Amodio Morelli et al., 1976; Argnani
et al., 2009).

This study focuses on the Pleistocene syn-rift deposits
that accumulated along the eastern margin of the
Crati Basin (Figure 1B). The basin is located in the
back-arc domain of the Tyrrhenian-Ionian subduction
system, initially forming in the Early Pleistocene
(Corradino et al.,, 2020; Monaco & Tortorici, 2000;
Scandone, 1979). The Crati Basin is an L-shaped basin
(Figure 1B), bound to the north and south by long-
lived, regional, NW-SE-striking, left-lateral strike-slip
faults, and to the east and west by an array of N-S-
striking normal faults (Spina et al., 2009; Tansi et al.,
2007; Figure 1). The sedimentary infill of the Crati Basin
comprises an Upper Miocene sedimentary sequence,
overlain by Pliocene to Holocene clastic marine and
fluvial deposits (Colella et al., 1987). Lanzafame &
Tortorici (1981) divide the stratigraphic succession
into two sequences. The lower sequence, recognized
only in the western portion of the basin, comprises
Upper Miocene-Lower Pliocene conglomerates and
sandstones that grade upwards into silty claystone and
unconformably overlie the Paleozoic and Mesozoic
crystalline-metamorphic basement thrust belt. The up-
per sequence comprises Pleistocene coarse-grained
deltaic and shoreline deposits, which form the focus
of this study (Carobene & Damiani, 1985; Colella et
al., 1987; Colella, 1988). These deposits accumulated
unconformably on Upper Miocene-Lower Pliocene
strata in the western side of the basin and on
crystalline-metamorphic basement in the eastern side.
The lateral variability in substrate type coincided with
a shiftin the locus of basin subsidence, which resulted
in a diachronous transgression of the overlying units
(Burton, 1971; Lanzafame & Tortorici, 1981; Lanzafame
& Zuffa, 1976). Lastly, Middle Pleistocene alluvial and
fluvial conglomerates overlay the marine Pleistocene
sequences, which were deposited in response to a
major uplift of the Calabrian Arc (Fabbricatore et al.,
2014).

4 Results: Syn-rift Fault-controlled Deposits

The Pleistocene syn-rift succession that accumulated
along the eastern margin of the Crati Basin was mainly
sourced from the uplifted footwalls of the Sila Massif
(Figure 1B). Sediments were deposited in a relatively
shallow-marine environment and prograded westward
(i.e., away from the basin-bounding fault; Colella et al.,
1987; Colella, 1988; Fabbricatore et al., 2014). Facies
analysis performed in the Bisignano (Colella et al., 1987;
Colella, 1988) and Arente areas (Fabbricatore et al.,
2014; Figure 1B), which correspond to the northern
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and southernmost portions of our study area (Figure 1),
was used to constrain and support the interpretation
of the depositional processes (Table 1).

4.1 Facies Description and Interpretation

The integration of published data and original
observations allowed us to define eight main
sedimentary facies (Facies A-H, Table 1). Facies
descriptions and associations, and their depositional
characteristics allowed us to determine the location,
size, distribution, and along-strike variability of
proximal gravel (facies A-E) to distal sand-dominated
deposits (facies F-H; Table 1 and Figure 2). The
identified facies are similar to those previously
described (e.g., Colella et al., 1987; Colella, 1988;
Fabbricatore et al., 2014) and are referred to as deltaic
systems. Our study emphasizes the importance of
considering variability (i.e., temporal and along-strike)
in the sedimentology and stratigraphic architecture
of fault-controlled deltaic deposits, as similarities
between depositional processes and resulting facies
may be found within shelf- and Gilbert-type deltas.
However, the development of gently inclined versus
steeply inclined sandstone-dominated deposits (Facies
F; Table 1) is used to distinguish between shelf- versus
Gilbert-type deltas.

4.1.1 Gravel-dominated facies

Facies A consists of structureless, poorly sorted, sub-
rounded to rounded pebble to boulder (up to c. 90 cm)
clast-supported conglomerate, with clasts a-axis (i.e.,
clast longest axis) generally oriented E-W (Table 1).
Clasts are organized into continuous > 1m thick beds
and interpreted to represent debrites that resulted
from rapid deposition from highly concentrated,
cohesionless debris flows (Gobo et al., 2014; Nemec &
Steel, 1988).

Facies B is composed of poorly sorted, angular to
sub-angular pebble to cobble (up to ¢. 7cm) clast-
supported breccia (Table 1), organized in tabular beds
(< 20cm thick). This facies is interpreted to record
deposition from non-cohesive debris flows (Haughton
et al., 2009; Nemec, 1990).

Facies C consists of moderately sorted, rounded
pebble to boulder (up to c. 30 cm), clast-supported
conglomerate (Table 1), organized into tabular, thin,
continuous beds (< 20 cm thick). These deposits are
generally found above Facies D (Figure 2Av) and are
interpreted to have been accumulated in relation to
rapid clast dispersion occurring within cohesionless

debris flows (Gobo et al., 2014; Nemec & Steel,
1988).

Facies D is represented by lenticular bodies of
cross-bedded, normally graded, moderately sorted,
sub-rounded pebble to cobble (maximum c. 14cm;
Table 1), clast-supported conglomerate, with clasts
a-axis generally oriented E-W. Clasts are arranged
into > 1m thick beds that pinch-out laterally and are
defined by a concave top, and typically capped by
Facies C (Figure 2Av). These deposits are interpreted
to record deposition from non-cohesive turbulent
flows (Fabbricatore et al.,, 2014; Haughton et al.,
2009) or sediment reworking related to unidirectional
flows.

Facies E consists of vertically stacked, lenticular bodies
with a convex base, and comprise trough cross-
bedded, normally-graded (Figure 2Bii), moderately
sorted, sub-rounded to rounded pebble to boulder
(maximum c. 70cm; Table 1), matrix- and clast-
supported conglomerate. Where present, the matrix
consists of coarse-grained sands. This facies is
interpreted to have been accumulated in response to
sediment transportation within channels (Fabbricatore
et al., 2014, Longhitano, 2008).

4.1.2 Sand-dominated facies

Facies F is composed of structureless to normally
graded sandstone and pebbly conglomerate, or-
ganized into tabular beds (30 to 200cm thick;
Table 1). Based on the depositional configuration,
this facies is divided into two sub-facies. Sub-
facies F1 consists of gently inclined tabular beds
(30 to 200cm thick; Figure 2Biii-iv), whereas sub-
facies F2 form 30 to 130 cm thick units that define
relatively large-scale (up to 20m tall), basinward-
characterized by an overall westward-fining trend
(from granules to fine sands) and are interpreted to
record tractional deposition from highly concentrated,
sandy debris flows (Haughton et al., 2009; Surlyk, 1978).
Bioclastic fragments referable to marine bivalves are
present.

Facies G is defined by hummocky cross-stratified,
moderately sorted, sub-rounded, coarse-grained
sandstones, organized into continuous 20 to 200 cm
beds (Table 1). This facies is interpreted to have been
accumulated in relation to high-energy storm events
(Dumas & Arnott, 2006). Bivalves organized in shell-
rich layers are distributed within the deposits and are
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Facies Outcrop Example Description & Interpretation
Facies A | Description
T D S 1 Structureless beds (> 100 cm thick) of clast-supported conglomerate.
0 OO Poorly sorted, sub-angular to rounded, pebble to boulder clasts (6 to 90 cm).
700 ) 05@ Clasts longest axis generally oriented E-W.
Qa C]C Interpretation
te=Y; Rapid, highly concentrated, non-cohesive debris flows.

_ Facies B Description
‘;Oqoj oc'&“ Crude tabular beds (< 20 cm thick) of clast-supported breccia.
Qo0 faRN 002 Poorly sorted, angular to sub-angular, pebble to cobble clasts (0.4 to 7cm).
=¥} oo T I
2@§ 2 O@ Q Interpretation
V= L Laminar flow related to non-cohesive debris flows.
. Description
E FaCIes C Thin continuous beds (< 20 cm thick) of clast-supported conglomerate, generally overlying
© Facies D.
= Q O Moderately sorted, rounded, cobble to boulder clasts (7 to 30 cm).
g Clasts longest axis oriented E-W.
o°
= & ( Interpretation
E Rapid clast dispersion related to a non-cohesive debris flows.
(O]
) Description
UFaCIeS D Lenticular bodies (< 100 cm thick) of clast-supported conglomerate that pinch out laterally
2 DSOS ”oagé’QoC with a concave top.
oégga"%‘?o OOOQ Cross-bedded, normally graded, moderately sorted, pebble to cobble clasts (0.5 to 14 cm).
%()O""Oéboo Clasts longest axis oriented E-W.
@) )
%&%‘%%/57 Interpretation
Non-cohesive turbulent flow or tractional transportation related to unidirectional flows.
Description
| Vertically stacked lenticular bodies (> 100 cm thick) of matrix- and clast-supported
2 conglomerate with a convex base, sandy matrix.
Through cross-bedded, normally graded, moderately sorted, sub-rounded to rounded,
pebble to cobble clasts (4 to 70 cm).
Ty Interpretation
Sediment transportation through traction along channelised paths (i.e., channel
fill-deposits).
‘n
<] . .
‘S Description
% Vertically stacked tabular beds (<200 cm thick) of sandstone and pebbly conglomerate.
: S Structureless to normally graded, moderately sorted, sub-angular grains. Pebble
Facies F Y g Yy gularg
A Y clasts and carbonate bioclasts are dispersed or scattered into apparently
non-continuous thin layers.
Overall westward (basinward) fining trend.
Based on the depositional configuration of the beds distinguished between Sub-facies
~ F1 (sub-horizontal) and F2 (inclined 12-35 degrees).
w
& Interpretation
g Tractional, rapid, highly concentrated sandy flows.
el >
T @
(18]
&5
§
° A
& Facies G Description ) ) )
c T0 0 o080y Continuous beds of variable thickness (20 to 200 cm) coarse-grained sandstone
o = interbedded with Facies F.

Hummocky cross-stratification of moderately sorted sandstone.

Interpretation
Deposition related to high-energy events (i.e., storm) resulting in oscillatory flows.

FaclesH

Description

Continuous beds (< 15 cm thick) of coarse-grained sandstone to gravel (0.07 to 0.3 cm) with
an asymmetrical wavy top.

Cross-lamination of moderately sorted, sub-rounded sandstone.

Interpretation
Deposition related to a unidirectional current, resulting in the tractional transportation of
sand grains and resulting in the migration of subaqueous bars.

Table 1 - Summary of the main facies recognized in the eastern margin of the Crati Basin.
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Figure 2 - (A) Idealized depositional model, architecture, and facies of shelf-type deltas (i-v). This type of system is characterized
by the dominance of gently inclined tabular beds of deposits of sub-facies F1. (B) Idealized depositional model, architecture,
and facies of Gilbert-type deltas (i-iv). This system is characterized by foresets mainly composed of sub-facies F2. Displayed
numbers (i.e., 2Ai and 2Biv) indicate the stratigraphic position and locations of the studied areas and measured logs. Cgl =

conglomerate; Sst = sandstone; Sh = shale/mudstone.

interpreted to have potentially resulted from high-
energy (storm or tsunami) events.

Facies H consists of cross-laminated, moderately
sorted, sub-rounded coarse-grained sandstones,
organized into up to 15cm thick continuous beds
(Table 1), and characterized by an asymmetrical, wavy
top. Paleocurrent measurements indicate transport
to the west (Table 1). These deposits are interpreted

to record deposition of subaqueous bars formed
under unidirectional currents and reworked by fair-
weather waves (Fabbricatore et al., 2014; Rasmussen,
2000).

4.2 Facies Associations

The detailed logging of deposits revealed eight main
component facies (Table 1), which form two main facies
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associations—referable to shelf-type and Gilbert-type
delta facies models.

Facies A-E, F1, G, and H are genetically related. For
example, conglomeratic (Facies A, C-E) and breccia
(Facies B) deposits dominate proximal areas immedi-
ately adjacent to the basin-bounding faults, forming
an alluvial fan, and showing a fining-basinward trend
resulting in gently inclined, delta slope sandstone-
dominated facies (Facies F-H; Figure 2Bii). Gently
inclined sandstone and conglomerate deposits of the
sub-facies F1 dominate and extend basinward for at
least c. 1.27 km, intercalated with deposits of Facies
E, G, and H (Figure 2Av; Table 1). In this system, we
interpret this facies association as representative of
shelf-type delta deposits (Figure 2A; facies model
‘S" sensu Chiarella et al., 2021). The interpretation is
supported by the proximal accumulation of alluvial fan
conglomeratic deposits (Facies A), passing basinward
into gently inclined delta slope deposits (sub-facies
F1; Figure 2Biii), and the overall proximal-to-distal
fining trend (Figure 2Bi and Table 1; Colella, 1988;
Fabbricatore et al., 2014; Swift & Thorne, 1992).

Facies A-E and F2 are related deposits. As for the facies
model 'S', conglomeratic (Facies A) and breccia (Facies
B) deposits dominate in the proximal areas close to the
basin-bounding fault. However, in contrast to the facies
model ‘'S, these proximal deposits are organized into
slightly inclined, basinward-dipping strata (up to 5°)
overlying more steeply inclined (up to 35°), sandstone-
dominated foresets of sub-facies F2 (Figure 2Bi).
Deltaic foresets dip westward (Figure 2Bii-ii) into
the basin for at least 1.5km. Conglomeratic bars
and channel fill deposits (Facies C-E) are found at
the topset-foreset transition (i.e., delta-brink zone
sensu Gobo et al., 2014; Figure 2Bii). The upward
transition from steeply inclined foresets to sub-
horizontal topsets, and the overall coarsening-upward
trend, suggest this facies assemblage is representative
of Gilbert-type delta deposits (Figure 2B; facies model
‘G’ sensu Chiarella et al., 2021).

4.3 Architectural Variability of Deltaic Deposits

We correlated twenty-nine sedimentary logs across the
three studied sectors (Figure 1B) based on analysis of
facies, stratigraphic position, depositional architecture
and their resulting thickness in the context of
displacement and accommodation variations along
the basin-bounding faults (Figure 3). Although the
study area was not always walkable along-strike,
biostratigraphic data collected by Colella et al. (1987)

and Fabbricatore (2011) allowed us to infer that the
studied deposits exposed along the eastern margin
(i.e., from the Bisignano to the Arente areas; Figure 1B)
are age-equivalent.

Overall, the studied succession thickens northward
from 240 to 325m, suggesting a general increase
in accommodation in that direction. The distribution
of the described facies and related ‘S' and ‘G’
facies models indicate that during the earliest stage
of deposition, shelf-type delta deposits developed
in all three sectors (Figures 3, 4B). In contrast,
during the late stage (Figure 4Bii), Gilbert-type delta
deposits accumulated only across the central and
northern sectors (Figure 3B-C), whereas deposition
of shelf-type deltas continued in the southern sector
(Figure 3A).

5 Discussion: Fault-controlled Deltaic Systems
and Architectural Variability

In addition to sedimentation rate and depositional
regime (e.g., waves, tides, rivers), the sedimentology
and stratigraphic architecture of syn-rift depositional
systems are also controlled by temporal and spa-
tial changes in fault displacement rate and total
displacement (e.g., migration of fault tip versus
center; Chiarella et al., 2021; Gawthorpe et al., 1994;
Gawthorpe & Colella, 1990; Hardy & Gawthorpe,
1998). These two variables control accommodation
distribution, sediment input and /oc¢i of sediment
accumulation along faults. Therefore, the stratigraphic
and architectural analysis of normal fault-controlled
deposits provides critical constraints (or insights) for
the growth model and evolution of a basin-margin
fault system (e.g., Backert et al., 2010; Bell et al,,
2009; Young et al., 2003). Nemec (1990) suggests
that depositional slopes with steep subaqueous
gradients develop deltas characterized by steep
foresets. These deltas progressively evolve into
Gilbert-type systems under high sedimentation rate
conditions, with characteristic topset, foreset, and
bottomset architectures.

These morphological conditions are easily created
towards the center zone of normal faults during late
phases of growth, and are usually characterized by
a high displacement rate. Conversely, depositional
profiles having an angle of less than 5° result in the
development of gently inclined beds, characteristic of
shelf-type deltas (Ethridge & Wescott, 1984).
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Considering fault displacement variability, Chiarella
et al. (2021) propose that in fault-controlled systems,
after an embryonic phase characterized by unsteady
base-of-scarp deposits, limited vertical displacement
produces limited accommodation, leading to the
deposition of gently inclined beds within shelf-type
deltaic systems. Conversely, faults with large vertical
displacement lead to high accommodation, creating
the conditions for the development of the tripartite
architecture (i.e., topset, foreset, bottomset) and the
progradation of Gilbert-type deltaic systems. These
changes in the architecture geometry and depositional
style (i.e., shelf- versus Gilbert-type deltas) are
controlled by the evolution of the basin-margin fault
system. We argue that deltaic system variability can
be used to infer normal fault system growth models,
and evolution and variations in displacement and
accommodation along faulted margins, considering
fault displacement and accommodation are created
along-strike.

Our results indicate that the Pleistocene deltaic
succession exposed along the eastern margin of the
Crati Basin is characterized by an overall northward
increase in thickness, interpreted to reflect higher
displacement and accommodation. Moreover, our
sedimentological results show the development of
vertically stacked shelf-type deltas along strike, and the
vertical transition and lateral evolution from shelf- to
Gilbert-type deltas (Figures3 and 4B). We infer that the
evolution of the fault system controlling the eastern
margin of the Crati Basin (Figure 4A) was characterized
by an early stage of rifting with faults accruing limited
displacement. During this early stage (Figure 4Bi), low
displacement and accommodation, and continuous
deposition promoted the development of vertically
stacked shelf-type deltas along strike (Figure 3).
We also determine that the fault system grew in
accordance with a constant-length growth model
(sensu Childs et al., 2017; Jackson et al., 2017) due
to the development of shelf-type deltas along the
entire length of the fault (i.e., Fault B in Figure 4Ai
and Bi).

The following stage of margin evolution (i.e., late
stage; Figure 4Aii and Bii) resulted in the vertical
transition and lateral evolution from shelf- to Gilbert-
type deltas (Figure 4Bii) along the central and northern
sectors. The stratigraphic relationships between the
early- and late-stage systems and the most landward
location of the latter systems in correspondence
with Fault A (Figures 3 and 4Bii) suggest that the

late stage of the margin evolution occurred after
a relative sea-level rise, resulting in the shift of
depositional systems towards the east (landwards). We
infer that higher displacement and accommodation
in the central and northern portion of the faulted
margin promoted the development of a more complex
tripartite architecture (i.e., topset, foreset, bottomset),
distinctive of Gilbert-type deltas (Figures 3B and C,
and 4Bii) on top of shelf-type systems (Figure 4Aii and
Bii). Low displacement rates continued to occur along
the southern tip of the fault (i.e., southern sector),
producing the vertical stacking of shelf-type deltas
(Figures 3A and 4Bii). Accordingly, the stratigraphic
evolution of the system recorded a change to a period
(i.e., late stage) when the fault system growth was
defined by displacement accumulation rather than
lengthening. This pattern is comparable to what was
documented by Jackson et al. (2017) along Fault 2 in
the Gulf of Suez Rift (Egypt) and Fault 4 in the Santos
Basin (offshore SE Brazil). The along-strike evolution
from shelf- to Gilbert-type deltas documented in
this study along a fault-controlled system in the
Crati Basin is also observed in subsurface data (e.g.,
North Sea, Norwegian Continental Shelf, Northern
Carnarvon Basin). An example from the hanging
wall fill of the Rankin Fault System in the Dampier
Sub-basin (Northern Carnarvon Basin, Fortuna 3D
seismic survey; Martinez et al., 2024) is reported in
Figure 5. Here, parallel seismic lines acquired along the
fault evolution document two different depositional
architectures referable to Gilbert- (Figure 5B) and
shelf-type (Figure 5C) systems that developed along-
strike.

6 Conclusions

Our results suggest that the analysis of syn-rift
strata provides important information on the spatio-
temporal evolution of normal fault systems and related
depositional architecture (external geometry, layer
architecture, and the arrangement of sedimentary
structures), which are diagnostic for evaluating along-
strike fault displacement rate changes. The main
conclusions of this research are:

+ Across the faulted margin, early phase rifting
resulted in the accumulation of shelf-type deltas
along-strike, in response to the development of
low displacement faults that grew in accordance
with a constant-length growth model.
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The vertical transition and lateral evolution
from shelf- to Gilbert-type deltas along the
central and northern sectors record higher
displacement and accommodation. Deposition
of shelf-type deltas continued in the southern
sector, forming a vertically-stacked arrangement,
which suggests low displacement rates along that
sector. Therefore, the late stage of stratigraphic
evolution indicates that the fault system growth
was defined by displacement accumulation rather
than lengthening.

The stratigraphic relationships between the early
and late-stage systems indicate that the late stage

of margin evolution occurred after a relative sea-
level rise, producing a transgression and the shift
of the coastline towards the east.

Our study demonstrates that the temporal
and along-strike stratigraphical and architectural
analysis of deltaic deposits can be useful when
trying to determine the evolution of structures
that are poorly exposed in the field or deeply
buried in the subsurface.

Our results are also useful for assessing the
relationships between relatively high displacement
rates at the fault center and the development of
steep-faced morphologies (i.e., Gilbert-type), which
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are characterized by sediment remobilization that
promotes gravity-driven, mass-transport processes
(debris flows). The results emphasize that syn-rift
deltaic successions represent sensitive recorders of
fault kinematics, and provide a valuable framework
for refining models of rift-basin evolution by linking
tectonic displacement patterns with basin-scale
stratigraphic organization.
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