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Abstract | This study explores the application of machine learning techniques to automate and enhance petrographic 
workflows, focusing on grain segmentation and feature extraction. We present two novel software tools: GrainSight, 
which utilizes a supervised deep learning model (FastSAM) for automated grain detection and morphological 
characterization; and PetroSeg, which employs an unsupervised segmentation approach to explore rock properties 
and calculate porosity. GrainSight application significantly improves efficiency and accuracy compared to manual 
methods. The FastSam model enables rapid and accurate grain detection and extraction of morphological features, 
which can provide insights into depositional environments, sediment routing systems, and reservoir quality. PetroSeg, 
on the other hand, offers an exploratory approach for porosity quantification, identification of mineral associations, and 
characterization of textural domains. Both methods offer unique advantages and demonstrate the potential of machine 
learning in petrographic analysis. Utilizing these tools has the potential to greatly enhance efficiency, objectivity, and 
data processing, thereby enabling new opportunities for teaching, research, and applications across multiple geological 
fields. The code of the two applications, GrainSight and PetroSeg, is open-source, available on GitHub and data.gouv.fr.
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Lay summary | The study of rock samples under a microscope is essential for gaining knowledge about Earth’s history 
and its valuable resources. However, traditional methods are slow, inefficient, and can be biased. This study presents two 
new computer programs, GrainSight and PetroSeg, powered by artificial intelligence, to automate and improve rock 
analysis. GrainSight automatically identifies the boundaries of individual grains in a rock and measures their shape, size, 
and other morphological parameters. This information helps scientists understand how the rock was formed and how 
the grains were transported. PetroSeg analyzes the distribution of minerals and empty spaces (pores) within the rock. 
This helps determine important properties like porosity, which is crucial for understanding how fluids, like oil and gas, 
flow through rocks. These user-friendly programs can significantly speed up analysis, reduce human error, and enable 
the study of larger datasets, leading to a more comprehensive and objective understanding of rocks and their formation 
processes.

 1. Introduction

Machine learning algorithms can be broadly categorized 
into supervised and unsupervised learning approaches 
(Hastie et al., 2009; Alpaydin, 2020). Supervised learning 
involves training models on labeled datasets to make 
predictions on new data (Hastie et al., 2009), while unsu-
pervised learning aims to identify patterns and structures 
in unlabeled data without explicit guidance (Jain, 2010). 
Image segmentation, which involves partitioning an 

image into meaningful segments or objects, is a common 
task in computer vision and plays an increasing role in 
automated petrographic analysis (Sharma & Aggarwal, 
2010; Cheng et al., 2017). Traditional image segmenta-
tion techniques, such as thresholding and edge detection 
(Zhang et al., 2008), often struggle with complex textures 
and mineral variations. Additionally, camera settings vari-
ations, including resolution, focus, and lighting condi-
tions, can further complicate the segmentation process, 
making it difficult to achieve consistent and reliable results 
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across different datasets or imaging setups. Deep learn-
ing-based methods, particularly convolutional neural net-
works (CNNs), have demonstrated remarkable success 
in image segmentation tasks, due to their ability to learn 
hierarchical features and adapt to diverse image charac-
teristics (Badrinarayanan et al., 2015; LeCun et al., 2015; 
Ronneberger et al., 2015).

Petrographic analysis, which represents the foundation 
of understanding rock composition, texture, and forma-
tion processes, plays a major role in various geoscience 
disciplines, including sedimentology, volcanology, and 
tectonics. By examining thin sections of rocks under a 
microscope, petrographers can identify constituent min-
erals and the composition of grain types, characterize 
their spatial arrangement and grain size distribution, and 
infer the geological history of the sample (Vernon, 2004). 
However, petrographic methods rely heavily on time-con-
suming manual techniques, often leading to subjective 
interpretations, and limitations in data throughput (Lokier 
& Al Junaibi, 2016; Dumakor-Dupey & Arya, 2021). The 
manual identification and characterization of individu-
al grains within a thin section pose significant challeng-
es. Petrographers meticulously trace grain boundaries, 
measure dimensions, and classify mineral types based 
on optical properties and visual estimations. This process 
is laborious and prone to inconsistencies due to human 
fatigue, inter-observer variability, and potential biases. 
Furthermore, the manual approach restricts the scope of 
analysis, hindering the ability to extract statistically robust 
quantitative data from large sample sets, which is crucial 
for understanding complex geological phenomena and 
heterogeneities within rock units.

Several studies have explored the use of Machine Learn-
ing (ML) in petrography, primarily focusing on supervised 
learning approaches. For example, CNNs  have been 
successfully applied to tasks such as grain boundary 
detection and mineral identification (Tang et al., 2020; 
Liu et al., 2022; Nichols et al., 2023; Zhang et al., 2024). 
However, supervised learning requires substantial train-
ing datasets with manually labeled grains and minerals, 
which can be time-consuming and expensive to create. 
Unsupervised learning techniques present an alternative 
approach, segmenting images based on inherent similar-
ities in color, texture, or other features, without the need 
for prior labeling ( Kanezaki, 2018; Harb & Knöbelreiter, 
2021). While they may not achieve the same level of dis-
tinction as supervised methods, unsupervised approaches 
offer a valuable tool for exploratory analysis and can be 
very useful for calculating porosity and grouping mineral 
associations (Latif et al., 2022).

This paper investigates the application of both super-
vised and unsupervised machine learning techniques in 
petrography, aiming to address and overcome the lim-
itations of manual methods and pave the way for auto-
mated, data-driven petrographic analysis. We present two 
software: GrainSight, which uses a deep learning model 

for automated grain detection and morphological feature 
extraction; and PetroSeg, which employs unsupervised 
segmentation to analyze and quantify mineral distribution 
without labeled data. By evaluating these methods, we 
aim to demonstrate how machine learning can improve 
efficiency, objectivity, and data processing in petrographic 
workflows. The code of the two applications, GrainSight 
and PetroSeg, is open-source and available on GitHub and 
at https://recherche.data.gouv.fr, an online data reposito-
ry hosted by the French administration. The applications 
can be found by searching for ‘GrainSight’ or ‘PetroSeg’ 
on the platform.

 2. Methodology

 2.1. GrainSight for grain boundary detection and 
feature extraction

GrainSight uses the Fast Segment Anything Model 
(FastSAM), a cutting-edge deep learning architecture 
specifically designed for efficient and accurate image 
segmentation and object detection (Zhao et al., 2023). 
FastSAM’s ability to generate high-quality object masks 
at remarkable speeds makes it ideal for identifying and 
segmenting individual grains within complex thin section 
images. Unlike the original Segment Anything Model 
(SAM) developed by Meta that relies on a computation-
ally expensive Transformer-based architecture (Kirillov et 
al., 2023), FastSAM employs a more efficient CNN-based 
detector, enabling real-time performance without sacrific-
ing accuracy (Zhao et al., 2023). I mplementing GrainSight 
with FastSAM leverages a YOLOv8-seg model, a pow-
erful instance segmentation model based on the “You 
Only Look Once (YOLO)” architecture. YOLOv8-seg is 
renowned for its speed and accuracy in detecting and 
segmenting individual objects within an image. This 
specific model has been pre-trained on a subset (2%) of 
the SA-1B dataset, a massive dataset containing over one 
billion masks for various objects. This pre-training enables 
the model to effectively recognize and delineate a wide 
range of shapes and patterns, including those found in 
thin section images of geological samples. GrainSight uti-
lizes this pre-trained YOLOv8-seg model as the initial step 
in its automated grain detection and segmentation pipe-
line. The model analyzes the input thin section image and 
identifies all potential objects, including individual grains. 
The output of this stage is a set of segmentation masks, 
each highlighting a potential grain within the image. 
These masks serve as a foundation for further analysis, 
enabling GrainSight to extract quantitative morphological 
features for each detected grain and perform subsequent 
calculations related to grain size distribution.

GrainSight is implemented as a user-friendly web appli-
cation built using the Streamlit framework (Figure 1). The 
application allows users to upload thin section images in 
JPG, PNG, or JPEG formats, adjust segmentation param-
eters, set the scale for measurements, and visualize the 
segmented image with grain boundaries and extract-
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ed features displayed in a tabular format. Users can also 
download the results as a CSV file for further analysis and 
visualization. Morphological features are extracted from 
each segmented grain using the OpenCV library. The 
extracted features include (1) the area, which represents 
the total number of pixels within the segmented grain 
area; (2) perimeter, which measures the length of the 
boundary enclosing the grain; (3) circularity, calculated as 
4 times the area divided by the square of the perimeter, 
representing how closely the grain shape resembles a 
circle [this measure is sometimes referred to as roundness 
in the literature, but we use circularity to avoid confusion 
with more complex roundness estimations, see Blott and 
Pye (2008)]; (4) aspect ratio, measuring the ratio between 
the longest and shortest dimensions of the grain; (5) 
longest length, representing the longest Feret diameter 
of the grain, which is the maximum distance between any 
two points along its boundary. To obtain accurate mea-
surements, pixel-based features are converted to physical 
units (e.g., micrometers) using a scale factor determined 
from a reference line drawn on the image with a known 
length. GrainSight is designed to handle a wide range of 
image resolutions and input shapes, offering flexibility for 
users with diverse datasets. The app can process images 
with both lower and higher resolutions, including resolu-
tions below 72 dpi. Importantly, it provides the option to 
redefine the input shape of the image, allowing users to 
adjust the image dimensions according to their specific 

needs and computational resources. This feature is par-
ticularly useful for handling large images or optimizing 
processing time on less powerful computers. Higher reso-
lutions can potentially provide more detailed information 
for grain boundary detection, but they may also increase 
processing time. Ultimately, the choice of image resolution 
and input shape depends on the specific requirements of 
the analysis and the available computational resources.

 2.2. PetroSeg: Unsupervised segmentation for quanti-
tative measurements

PetroSeg applies an unsupervised segmentation algo-
rithm, namely an enhanced version of the InfoSeg algo-
rithm for unsupervised semantic image segmentation 
(Harb & Knöbelreiter, 2021). This novel approach is particu-
larly important for its focus on segmenting images without 
requiring labeled training data, making it highly versatile 
for a wide range of applications. This eliminates the reli-
ance on potentially biased and labor-intensive manual 
labeling, opening doors for faster and more objective 
exploration of diverse datasets. The algorithm begins with 
pre-segmentation of the image into small regions with 
potentially similar semantic content, using the Felzensz-
walb algorithm (Felzenszwalb & Huttenlocher, 2004). The 
convolutional network then extracts features and refines 
the segmentation, merging regions with similar semantic 
information into larger ones, until a final segmentation is 

Figure 1 | User interface of the GrainSight app, featuring adjustable algorithm parameters such as image input size, IoU (Intersection over 
Union) threshold, and confidence threshold. The analysis results are summarized in a table and displayed as a cumulative frequency plot 
of grain size distribution. Intersection over Union (IoU) threshold is used to evaluate the performance of object detection by comparing 
the ground truth bounding box to the predicted bounding box. YOLOv8 also applies a confidence threshold to filter out low-confidence 
predictions. Predictions below these thresholds are not considered.
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achieved. In petrographic analyses, this approach facil-
itates the visual exploration of potential mineral associ-
ations, which aids in identifying and quantifying mineral 
phases based on their optical properties, such as color 
and texture. This enables the estimation of mineral pro-
portions within the sample. PetroSeg is implemented as 
a user-friendly Streamlit web application (Figure 2). The 
software has an intuitive interface that allows users to 
perform various tasks. Users can upload images, adjust 
segmentation parameters, and explore the segmented 
results interactively. They also have the option to choose 
segment colors. Using unsupervised segmentation elimi-
nates the need for prior training data or manual annota-
tions, allowing users to gain insights into the composition 
and microstructure of their samples.

 3. Results and discussion

 3.1. GrainSight: Automated identification of sedimen-
tary rock texture

GrainSight adaptability and use across different thin section 
images show its potential to improve morphometric anal-
ysis. This is especially true for sedimentary rocks, where 
grain size and shape analysis are essential for inferring 
depositional environments, reservoir quality, and mechan-
ical properties. However, the principles of this analysis 
can be extended to a wide range of lithologies, including 
igneous and metamorphic rocks. For example, grain mor-
phology in volcanic tuffs can provide insights into eruption 
dynamics and fragmentation processes which can help 
understand the crystallization history and magmatic pro-
cesses in granites. Similarly, grain size and shape analysis 

in metamorphic rocks can reveal information about defor-
mation mechanisms and metamorphic grade. Future work 
will explore the application of GrainSight to these diverse 
lithologies, demonstrating its potential for broader appli-
cations across various geological disciplines. The appli-
cation of GrainSight in petrographic analyses can benefit 
numerous fields, as illustrated by the following examples.

 3.1.1. Textural analysis of sandstone

Grain size and shape are key indicators of the transport 
and depositional processes that have shaped a sandstone. 
Well-sorted sandstones with rounded grains often suggest 
deposition in high-energy environments like beaches or 
aeolian dunes, where prolonged transport and abrasion 
can reduce angularity and increase sorting (Blott  & Pye, 
2008). However, it’s important to note that roundness can 
also result from multiple cycles of erosion and redeposi-
tion. For instance, well-rounded quartz grains in low-en-
ergy settings may have been recycled from older, pre-ex-
isting sandstones . Recycling of grains is a key concept in 
sedimentary geology, as materials can undergo several 
rounds of erosion, transport, and redeposition before 
their final deposition. Grains in mature sandstones may 
show characteristics of several past environments due to 
these recycling processes (Kleesment, 2009). Conversely, 
poorly sorted sandstones with angular grains are more 
indicative of deposition in lower-energy environments 
such as river floodplains or glacial settings, where trans-
port distances are shorter and there is less opportunity for 
grain modification (Cheng et al., 2023). Analyzing these 
textural parameters also provides valuable data for reser-
voir characterization and quality assessment. Well-sorted 

Figure 2 | User interface of the PetroSeg app, providing users with the ability to investigate and analyze image features using customiz-
able parameters and color-coded labels.
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sandstones with larger grain sizes typically have higher 
porosities and permeabilities, making them more favor-
able for fluid flow and hydrocarbon production. Converse-
ly, poorly sorted sandstones with smaller grain sizes tend 
to have lower porosities and permeabilities, reducing their 
reservoir potential.

In our comparative study, we analyzed 25 sandstone thin 
sections using both manual grain boundary tracing and 
GrainSight. The studied samples originated mainly from 
various formations within the North Sea Basin, primarily 
deposited in shallow and deep-sea environments with 
complex diagenetic histories (Azzam et al., 2022). Thin 
sections were examined with a Leica DM750P polarizing 
petrographic microscope at 4x magnification, produc-
ing digital images with an average pixel size of 2.24 µm 
and a horizontal field of view (HFOV) of 6.38 mm (Figure 
3A). In addition to these methods, we attempted object 
extraction using thresholding techniques, which involved 
separating objects of interest from the background based 
on pixel intensity values (Sezgin & Sankur, 2004; Roduit, 
2007). For grain boundary detection, we selected a range 
of pixel intensity values corresponding to the boundar-
ies, and classified pixels within this range as foreground 
(object) and those outside as background. However, these 
methods were less efficient and more sensitive to varia-
tions in image quality and lighting conditions compared 
to GrainSight. Therefore, they were not included in the 
main comparative analysis. The results showed a signifi-
cant difference in terms of time efficiency between manual 
tracing and GrainSight. GrainSight achieved a remarkable 
reduction in analysis time, reducing it from 155 minutes per 
image to only ~3 minutes per image (Table 1). This gain in 
efficiency represents a major improvement for petrogra-
phers working with large datasets or under time-sensitive 
project constraints. GrainSight also enabled the analysis 
of a significantly larger sample size (570 grains on average; 
Table 1) compared to manual tracing, leading to more 
representative calculations of the studied sample (Figure 
3A, B). This is crucial as manual tracing is subjective and 
petrographers often overlook smaller grains in favor of 
larger ones. It’s important to note that no grain size cut-off 
was applied in the current version of GrainSight. Although 
it is acknowledged that grains smaller than 10 microns can 
be difficult to measure in thin section reliably, and grains 
larger than 1–2 mm may not be entirely captured within 
the field of view. Furthermore, the grain size data present-
ed were not corrected for the potential underestimation 
inherent in thin section measurements, which can arise 
due to factors such as mineral type and grain orientation 
(Ragusa & Kindler, 2018). Also, grain boundaries touch-
ing image limits were included in the analysis, as Grain-
Sight can still accurately segment portions of these grains. 
Future versions of GrainSight will incorporate options for 
applying both grain size cut-offs and thin section correc-
tions based on user-defined parameters, thereby enhanc-
ing the accuracy and flexibility of grain size analysis. The 
cumulative frequency curves for grain size measurements, 
obtained through both manual methods and GrainSight, 

demonstrate a high degree of overlap, indicating strong 
agreement and validating the accuracy of GrainSight 
(Figure 3C). However, small deviations were also appar-
ent, potentially attributed to GrainSight’s ability to detect 
a greater number of grains that might be overlooked or 
difficult to distinguish during manual measurements, 
including smaller grains or those with less distinct bound-
aries. This increased sensitivity, while potentially providing 
a more comprehensive analysis, requires careful inspec-
tion to avoid over-segmentation and the inclusion of false 
positives.

We measured the performance of the FastSam model in 
identifying grains by assessing the precision, recall, and F1 
score achieved in some of the studied samples (Table 1). 
With an average precision of 0.96, the software correctly 
classified 96% of identified objects as actual grains, high-
lighting its accuracy in avoiding false positives. The recall 
value of 0.92 indicates that the model detected 92% of 
the grains in the images, showcasing its ability to capture 
a large portion of the target objects. The F1 score, which 
balances precision and recall, reached 0.94, confirming 
the model’s reliability and effectiveness in grain identifi-
cation. While the model exhibits high accuracy, a small 
portion (4%) of grains were misidentified (including inter-
sected objects or artifacts). Users are also encouraged to 
carefully review the segmented results and utilize their 
expertise to identify and correct any potential misidentifi-
cations or artifacts, ensuring the accuracy and reliability of 
the analysis. This underscores the importance of ongoing 
validation and potential parameter adjustments (e.g., con-
fidence threshold) based on specific research objectives 
and acceptable error margins. Finally, it is worth noting 
that GrainSight requires medium to high memory usage, 
depending on the size of the images and the number of 
objects detected.

 3.1.2. Zircon characterization

Zircon plays a crucial role in understanding the age, origin, 
and tectonic history of rocks, due to its ability to incor-
porate trace elements and preserve isotopic data (Fon-
neland et al., 2004). GrainSight high-resolution object 
detection and precise contour detection capabilities 
allow for extracting key morphological parameters from 
zircon grains, including elongation, roundness, surface 
roughness, and sphericity. As demonstrated in Figures 4A 

Table 1 | Comparison of Manual Tracing (JMicroVision) and 
GrainSight for Grain Analysis

Parameters Manual Tracing 
(JMicroVision) GrainSight

Time (minutes) ~ 155 min ~ 3 min

Grain Count ~ 350 ~ 570 

Precision - 0.96

Recall - 0.92

F1-Score - 0.94

Misidentified grains - ~ 4%

Memory usage Low Medium to High
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and 4B, the model clearly identifies and labels each grain, 
even in images with potential boundary uncertainties. This 
enables detailed analysis of morphological parameters 
with a high level of accuracy and minimal misidentification 
(Figure 4C). These parameters are essential for tracing 
the origin of zircon grains. For example, elongation helps 
assess the transport and recycling history, while roundness 
provides insights into the degree of abrasion and trans-
port processes (Gärtner et al., 2013). By combining these 
parameters, petrographers can categorize zircon grains 
into distinct groups, revealing valuable information about 
their source, depositional environment, and degree of 
recycling (Azzam et al., 2024).

 3.1.3. Applications beyond sedimentary rocks

GrainSight can be applied to various rock types beyond 
sedimentary rocks. In igneous rocks, it aids in analyzing 
grain size and shape, identifying phenocrysts, and assess-
ing textural components. In metamorphic rocks, it facili-

tates the identification of mineral grains, analysis of folia-
tion, and characterization of mineral zonation (Figure 5A, 
B). Further fine-tuning of the model on specific cases or 
rock types is expected to grow the impact of this model 
across a range of diverse fields.

 3.2. PetroSeg

 3.2.1. Porosity calculation

Understanding the distribution and characteristics of 
pore spaces within rocks is crucial for evaluating reservoir 
quality, fluid flow, and overall rock properties. Fortunately, 
most conventional methods for preparing rock thin sec-
tions use epoxy resin containing a blue dye injected into 
the pore system. This distinctive blue coloration allows 
PetroSeg to distinguish pore spaces from mineral grains 
easily, enabling quick computation of porosity as a frac-
tion of the total image area (Figure 6A, B). The porosity 
analysis example presented in Figure 6 was based on 15 

Figure 3 | (A) Microscopic image of a sandstone sample exhibiting a poorly sorted, medium to coarse-grained texture. (B) The same 
image after automated grain detection with GrainSight, demonstrating that the software has detected almost all the grains despite the 
varying texture. (C) Cumulative frequency curves of grain size distributions for five sandstone samples, obtained through both manual 
measurements and automated image analysis software (GrainSight). A strong agreement between the manual methods and GrainSight 
is evident.

A B

C
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thin section images of sandstones from the Agat Forma-
tion (Norway), characterized by varying degrees of poros-
ity and cementation. PetroSeg’s results strongly agree 
with manual point counting methods and offer a signifi-
cant reduction in analysis time. This is demonstrated by 
a strong positive correlation (R² = 0.78) between the soft-
ware porosity calculations and those obtained through 
point counting (Figure 6C). This highlights its potential for 
analyzing large datasets and its implication in studies that 
require statistically robust porosity comparisons across 
multiple samples. In contrast, traditional image threshold-
ing methods, such as histogram thresholding, have a weak 
correlation with manual point counting, given their limita-
tions in analyzing complex images (Figure 6C). PetroSeg 
provides a noticeable improvement in speed and efficien-
cy and can handle complex images. 

 3.3.2. Estimation of cement and other minerals

Differentiating cement from framework grains is very chal-
lenging using traditional thresholding techniques. Figure 
7A shows an example of a sandstone cemented by calcite 
that has been stained with alizarin-potassium ferricyanide. 
By adjusting the segmentation parameters, PetroSeg iso-
lates the cementing materials, allowing for easy calcula-
tion of calcite cement volume and highlighting its distribu-
tion within the rock sample (Figure 7B). Cementing mate-

rials like siderite, dolomite, hematite, and chlorite can also 
be easily segmented using PetroSeg. This is crucial for 
understanding diagenetic processes, evaluating reservoir 
quality, and assessing the mechanical properties of sed-
imentary rocks. In addition, the software demonstrates a 
remarkable proficiency in the analysis of intensely colored 
minerals, including opaques that generally manifest as 
dark or black regions, as well as glauconite and chlorite, 
which exhibit green hues in thin sections (Figure 7C). The 
software effectively segments these phases, enabling 
accurate estimation of their abundance and distribution 
within the rock (Figure 7D). 

 3.2.3. Identifying mineral phases in SEM images

The grayscale values observed in backscattered elec-
tron-scanning electron microscope (BSE-SEM) images 
correspond directly to the density of the constituent mate-
rials. This density is, in turn, related to the atomic number 
of the present elements. PetroSeg leverages this relation-
ship by analyzing these grayscale values to distinguish and 
segment different mineral phases within the image effec-
tively. When supplemented with additional data sources, 
such as the elemental composition obtained through 
energy-dispersive X-ray spectroscopy (EDS), PetroSeg 
can generate maps of mineral associations and provide 
quantification. The use of PetroSeg for SEM image anal-

Figure 4 | (A) Cathodoluminescence image of a sample featuring various zircon grains in blue fluorescence. (B) The same image after 
automated processing with GrainSight, shows individual grains that were detected and colored distinctly. (C) Bar chart summarizing the 
results of the automated grain counting process, presenting the total number of grains, correctly identified grains (True positive), missed 
grains, and misidentified grains (False positive).

A

C
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ysis offers several key advantages. Firstly, the segment-
ed images enhance visualization of the different mineral 
phases and their spatial distribution. This is particularly 
valuable in cases where chemical mapping is not avail-
able (Figure 8A). Additionally, the software allows for the 
customization of the segmented image by assigning spe-
cific colors to each identified phase, thereby facilitating 
visual interpretation and analysis (Figure 8B). An excellent 

example of this is demonstrated in Figure 8C, where the 
distribution of chlorite coats around quartz grains can be 
easily mapped and quantified using PetroSeg (Figure 8D). 
However, certain challenges can arise when analyzing SEM 
images, particularly those with variations in brightness, 
contrast, or surface topography. For example, minerals 
with similar grayscale values, such as quartz and feldspar 
or calcite and aragonite, may be difficult to distinguish 

Figure 5 | (A) Example of GrainSight application on a polarized light micrograph of a thin section of mica schist. (Image from https://www.
sciencephoto.com/media/135371/view/mica-schist-thin-section-polarised-lm). (B) Segmented image of the same rock sample. Note the 
complexity of the sample.

Figure 6 | (A) Thin section image of a sandstone with various minerals showing high visible porosity. (B) PetroSeg segmentation of 
the same image, with color-coded labels and calculated percentages of each component. (C) Left: Scatter plot comparing the porosity 
obtained by manual point-counting and PetroSeg segmentation, revealing a strong positive correlation (R² = 0.78). Right: Scatter plot 
comparing the porosity percentage obtained by manual point-counting and histogram thresholding, showing no correlation (R² = 0.38). 
This highlights the superior accuracy of PetroSeg for automated mineral quantification compared to traditional thresholding methods.

A

C

B

A B
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solely based on grayscale information. This can lead to 
inaccuracies in mineral identification and quantification. 
To overcome these challenges, it is crucial to optimize the 
segmentation parameters and implement appropriate 
pre-processing steps to achieve optimal results. Integrat-
ing complementary data sources, such as EDS elemental 
mapping, can further enhance the accuracy of mineral 
identification and resolve ambiguities caused by similar 
grayscale values. Despite these challenges, unsupervised 
segmentation offers a valuable tool for applications across 
various geological samples.

 4. Limitations and perspectives

While both supervised and unsupervised methods hold 
great potential for advancing petrographic analysis 
through automation, it is essential to recognize their lim-
itations and consider future improvements. GrainSight is 
great for grain detection and morphological analysis but 
lacks direct mineral identification capabilities. Integrating 
the current model with other deep learning algorithms 
trained on specific mineral types could address this gap, 
and further automate thin section analysis in sedimentary 
geology. Moreover, GrainSight may encounter difficulties 
with complex lithologies that exhibit poorly defined grain 
boundaries or significant textural variations, necessitat-

ing further model fine-tuning for specific use cases. As an 
example, the automated distinction between a detrital 
quartz grain and a quartz overgrowth is very difficult to 
achieve. Similarly, PetroSeg faces challenges in mineral 
distinction due to its reliance on features like color and 
texture for segmentation, which may not always corre-
spond to distinct mineral phases. Combining PetroSeg 
with other techniques such as EDS or Fourier-transform 
infrared spectroscopy (FTIR) could enhance mineral iden-
tification accuracy. Furthermore, optimizing segmentation 
parameters in the algorithm may require some experimen-
tation and domain knowledge to achieve the best result. 
Complex textures with subtle mineral variations may also 
pose difficulties for PetroSeg, requiring the exploration of 
advanced image processing techniques or the develop-
ment of more sophisticated unsupervised algorithms.

Addressing these limitations through further research and 
development will solidify the role of machine learning as 
an indispensable tool in petrographic analysis.

 5. Conclusion

This work offers an insight into the potential of machine 
learning in transforming the field of petrography. Both 
supervised and unsupervised methods offer significant 

Figure 7 | (A) Thin section image of a calcite-cemented sample before segmentation. (B) Same image after segmentation; PetroSeg 
effectively isolates the calcite materials from the framework grains. (C) Thin section image of a sandstone cemented by chlorite and illite. 
(D) Same image after segmentation showing clear separation of mineral groups through proper parameter selection.
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advances in efficiency, objectivity, and image process-
ing capabilities, promoting a wider range of applications 
across various geological disciplines. GrainSight, based 
on FastSam, a novel supervised deep learning model, 
excels in automated grain detection and morphological 
feature extraction. This significantly reduces analysis time 
and removes subjective bias, allowing petrographers 
to quickly understand sedimentary rock textures, zircon 
characteristics, and features in igneous and metamorphic 
rocks. On the other hand, PetroSeg employs an unsuper-
vised segmentation approach to quantify mineral distribu-
tions and calculate porosity without the need for labeled 
training data. It has proved valuable for investigating 
mineral associations, diagenetic processes, and reservoir 
quality. However, several challenges remain in the applica-
tion of these methods. Improvements in the performance 
of the FastSam model can be achieved by fine-tuning the 
model for specific applications. PetroSeg may also face 
challenges in interpreting complex images, which may 
require careful tuning of the parameters for individual 

image analyses. As these tools advance, machine learning 
will increasingly transform petrography, revolutionizing 
how geologists examine and analyze geological samples.

 6. Code availability and online demo

The open-source code for the two applications, Grain-
Sight and PetroSeg, is available on GitHub (https://
github.com/fazzam12345/grainsight, https://github.com/
fazzam12345/PetroSeg) and can be directly accessed via 
data.gouv.fr (https://www.data.gouv.fr/fr/datasets/grain-
sight/, https://www.data.gouv.fr/fr/datasets/petroseg/). 
We highly recommend running the applications on local 
computers for optimal performance and functionality. 
However, for convenience and quick testing, online demos 
are available on Hugging Face Spaces (https://hugging-
face.co/spaces/fazzam/GrainSight, https://huggingface.
co/spaces/fazzam/PetroSeg). These online demos allow 
users to explore the basic features of the applications 
without the need for local installation. When using the 

Figure 8 | PetroSeg analysis of BSE-SEM images of sandstones. (A) BSE-SEM image of a sandstone sample before PetroSeg segmenta-
tion. (B) The same image after segmentation by PetroSeg, shows the effective delineation of various minerals and cement. (C) BSE-SEM 
image of a sandstone with chlorite coating before PetroSeg segmentation. (D) The same image after segmentation by PetroSeg, enables 
easy mapping and quantification of the chlorite.
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two apps, consider the following recommendations. For 
GrainSight, the input image size plays an important role 
in object detection and contour tracing. More objects 
can be detected when increasing the size of the input 
image, resulting in smoother contours, however, choos-
ing a larger size can increase the processing time, espe-
cially on computing-limited PCs. Users are encouraged 
to experiment with different settings to find the optimal 
balance between accuracy and efficiency for their data-
sets. Another important parameter is the confidence 
threshold, where lower values may result in more detect-
ed objects but can increase false positives or intersected 
objects. Careful experimentation with these two parame-
ters is essential for optimal results. For PetroSeg, the per-
formance may vary significantly depending on the type of 
thin sections and images. Complex images may require 
higher training epochs (the number of times the model 
iterates through the entire training dataset) to obtain rep-
resentative segments, but this can increase the process-
ing time per image. Lowering the model dimensions can 
speed up the training and processing and lead to a faster 
convergence of segments, but it can also lead to unde-
sired results. For fine-grained segmentation, we recom-
mend increasing the size of the input image, however, the 
default values work very well in most cases. Finally, some 
experimentation with the model’s parameters may be nec-
essary for optimal performance.
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