
Research article

1Sedimentologika | 2025 | Issue 1 | eISSN 2813-415X | Published by Geneva University Library Open Access Publications

This is an open access article under the terms of the Creative Commons Attribution License (CC-BY) © 2025 The Authors

Christopher R. Noto1* , Peter P. Flaig2 , Maria Antonieta Lorente3 

Multiproxy synthesis at the Arlington Archosaur Site: New 
insights into Cretaceous paralic paleoenvironments and regional 
stratigraphy, Woodbine Group, Texas, USA

Abstract | Ecosystems of the 'mid' Cretaceous are significant but poorly understood, due in large part to a sparse 
fossil record. Existing fossils, particularly in North America, are not chronostratigraphically well-constrained, further 
hampering comparisons of species and ecosystems across Laramidia and Appalachia. Efforts to overcome this lack of 
temporal resolution typically involve systematic collection of ashfall deposits, geochemistry, and biostratigraphy. Here 
we describe a new, high-resolution palynological and sedimentologic dataset from the Arlington Archosaur Site (AAS) 
of the Lewisville Formation (Woodbine Group; Middle Cenomanian). The integration of these new data with existing 
biostratigraphic, macrofossil (vertebrate, invertebrate, botanical), lithologic, ichnologic, and geochemical data allows 
for a comprehensive paleoenvironmental reconstruction and assessment of paleoenvironmental evolution during AAS 
deposition. Depositional environments are paralic and include nearshore, shallow-marine tidal-flat, lagoonal, tidal-delta 
deposits, fluvial-distributary channels, and associated floodplain environments including wetlands (swamp-marsh-lakes) 
and paleosols. The presence of the Cyclonephelium compactum – C. membraniphorum (Ccm) morphological plexus 
throughout the AAS deposit suggests a younger minimum age of (early) late Cenomanian for deposits, indicating 
possible southward expansion of this group into the Cretaceous Western Interior Seaway (CWIS) coincident with 
the onset of the Plenus Cold Event (PCE) of OAE2. The revised age estimate for the AAS suggests that Woodbine 
deposition at more proximal clastic source areas continued into the late Cenomanian, coeval with down dip Eagle 
Ford Group sedimentation. This study has important implications for the biogeography of western Appalachia and the 
response of terrestrial and shallow marine ecosystems of the southeastern CWIS to the onset of OAE2.
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Lay summary | The Woodbine Group is exposed between the cities of Dallas and Fort Worth in Texas and preserves 
a rare set of transitional continental-terrestrial to shallow-marine environments from a poorly known interval during 
the Late Cretaceous period. Here we describe a newly collected set of fossil pollen, spore, and marine microfossils 
from a prominent Woodbine locality called the Arlington Archosaur Site (AAS). These specimens, combined with 
sedimentology provide a highly-detailed record of ecological conditions during AAS deposition, documenting important 
environmental and climatic changes. Data support previous reconstructions indicating warm and humid, tropical-like 
conditions while revealing short-term sea-level fluctuations and relative temperature/humidity dynamics not evident 
in the rocks themselves. Results suggest that the AAS is younger than presented in previous reconstructions, and may 
correspond to the onset of a globally-recognized oceanic anoxic event called OAE2. A younger age for the Woodbine 
Group changes how we interpret the fossil plants and animals with respect to regional relationships, and how we 
compare them to global datasets. 
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 1. Introduction

The transition from the Early to the Late Cretaceous 
(Aptian to Cenomanian) was a period of major turnover 
in terrestrial ecosystems, from taxa that typify older 
Jurassic-Early Cretaceous communities to those which 
come to dominate the landscape in the Late Cretaceous 
and form the basis of "modern" communities (Jacobs & 
Winkler, 1998; Benson et al., 2013; Zanno & Makovicky 
2013; Nesbitt et al., 2019; Pérez-García et al., 2020). The 
global record for this period is relatively poor, especial-
ly in North America, which was separated into Laramidia 
to the west and Appalachia to the east by at least two 
major marine transgressions resulting in the formation of 
the Cretaceous Western Interior Seaway (CWIS) (Slattery 
et al., 2015). Our understanding of this transitional period 
is largely informed by the more robust Laramidian record, 
while that of Appalachia remains poor. One important 
piece of the Appalachia puzzle is found in north-central 
Texas. The terrestrial rock record of the 'mid' Cretaceous 
in Texas is fairly extensive, including deposits of the Trinity 
Group (late Aptian–early Albian), Washita Group (late 
Albian–early Cenomanian), and Woodbine Group (ear-
ly–middle Cenomanian). While fossils of the Trinity and 
Washita Group are well-characterized, the fossil record of 
the Woodbine Group has received only limited attention.

The Woodbine Group comprises valley-fill, fluviodeltaic, 
and shallow marine deposits sourced primarily from the 
Ouachita Mountains of southern Oklahoma and emplaced 
within the subsiding East Texas Basin and surrounding ar-
eas (Dodge, 1952; Oliver, 1971; Trudel, 1994; Ambrose 
et al., 2009). Previous work described dinosaurs, birds, 
crocodyliforms, mammals, fish, and invertebrates of the 
Woodbine Group (Bergquist, 1949; McNulty & Slaughter, 
1962; McNulty & Slaughter, 1968; Krause & Baird, 1979; 
Kennedy & Cobban, 1990; Trudel, 1994; Lee, 1997; Head, 
1998; Jacobs & Winkler, 1998; Adams et al., 2011; Tykoski 
& Fiorillo, 2010; Cavin et al., 2021; Hacker & Shimada, 
2021). Though these finds offer some insight into this im-
portant fossil assemblage, greater understanding of the 
biota they represent is hampered by the isolated state of 
the finds, with many being fragmentary and poorly pre-
served. The situation improved with the discovery of one 
particularly productive locality known as the Arlington 
Archosaur Site (AAS, Figure 1). Detailed surveys and sam-
pling of the site was carried out during several fieldwork 
campaigns from 2007 to 2017. This work included detailed 
descriptions of sedimentary characteristics, facies, strati-
graphic structure and architecture, and depositional envi-
ronments (Noto 2015; Adams et al., 2017; Andrzejewski & 
Tabor, 2020; Noto et al., 2023a) along with characteriza-
tion of a diverse faunal assemblage (see Main 2013; Main 
et al., 2014; Adrian et al., 2019, 2021, 2023; Drumheller 
et al., 2021; Noto et al., 2019, 2022, 2023b; Adams et al., 
2023; Ostrowski & Noto, 2023). However, much of this 
work had yet to be combined in a comprehensive syn-
thesis in order to definitively reconstruct AAS ecosystems 
and paleoenvironmental evolution. 

Woodbine Group exposures in the DFW area generally 
record marine deposits along a Cretaceous Appalachia 
tidal coastline that interfinger with more proximal, up-dip 
coastal plain deposits (Noto et al., 2023a). These types of 
depositional systems typically contain a lithofacies suite 
that is notoriously challenging to correlate over even 
short distances, because the deposits are highly heter-
olithic and lateral facies changes can occur over 10–20 
m. These systems not only exhibit major lateral facies 
changes, but also contain up-dip and down-dip hetero-
geneity (e.g., coastal plain to deltaic to tidal shelf facies). 
Therefore, Woodbine Group outcrops that are correlated 
using a lithostratigraphic approach may not be correlated 
chronostratigraphically, resulting in major problems for in-
terpreting the characteristics and evolution of Woodbine 
deposystems and ecosystems. In addition, palynologi-
cal studies of the Woodbine Group that can aid in cor-
relations and provide age control are limited, with many 
describing palynomorphs from localities far from the ex-
posures in the DFW area (Bergquist, 1949; Stephenson, 
1952; Hedlund, 1966; Denne et al., 2016). 

One way to address this problem is to develop a biostra-
tigraphic, and if possible, sequence stratigraphic frame-
work for the Woodbine Group exposures in the Dallas-Fort 
Worth area. This would be a major step toward identifying 
outcrop intervals deposited during the same time peri-
od that could be correlated locally. This biostratigraphic 
framework would improve regional correlations and allow 
for identification of contemporaneous successions across 
the CWIS in Laramidia, promoting more accurate com-
parisons of vertebrate fossil and paleobotanical assem-
blages. Deposits at the Arlington Archosaur Site present 
a valuable case study due to a long history of detailed re-
search, high lithologic variability (continental-terrestrial to 
marine-transitional stratigraphy), potential for high-resolu-
tion sampling (cm-scale), and a good preservation poten-
tial for palynomorphs. Furthermore, considering the total 
AAS outcrop thickness is no greater than 2.5 meters, it is 
extremely difficult to place the sediments into an existing 
lithostratigraphic framework. It would be much more valu-
able to employ a multidisciplinary approach in order to 
provide a high-resolution biostratigraphic framework tied 
to stratigraphy to refine paleoenvironmental interpreta-
tions and provide age control. Therefore, the goals of this 
study are to: (1) refine the paleoenvironmental interpre-
tation of AAS deposits by combining paleontology, sedi-
mentology, and biostratigraphy, (2) compare these results 
to previous studies of Woodbine Group palynomorphs, 
paleoenvironments, and climate proxies, and (3) identify 
the chronostratigraphic position of the AAS deposits and 
inclusive biota and point out significant correlations.

 2. C haracteristics and History of the Woodbine Group

The subsurface characteristics and extent of Woodbine 
Group deposits have been extensively studied as part 
of petrochemical development in Texas. The entire 
Woodbine succession (up to ~330 m) is well documented 
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in abundant drill core and wireline logs (Ambrose et al., 
2009; Hentz et al., 2014; Denne et al., 2016). Recent 
sequence stratigraphic interpretations based on se-
quence boundaries and flooding surfaces identified the 
Woodbine Group as a third-order regressive sequence 
deposited over ~1.5 m.y. (Ambrose et al., 2009; Hentz et 
al., 2014; Denne et al., 2016). Woodbine fluvio-deltaic de-
posits vary spatially and temporally (Ambrose et al., 2009; 
Hentz et al., 2014) with different deposystems occupy-
ing different levels in the stratigraphy, reflecting eustatic 
fluctuations. Ambrose et al. (2009) identified deposits of 
lowstand, transgressive, and highstand systems tracts. For 
example, valley incision (sequence boundaries) and valley 
fill sequences occurred during and immediately following 
lowstands whereas thick deltaic deposits are deposited 
during transgressions and highstands. Variable accommo-
dation in the Woodbine was also affected by salt tecton-
ics (Ambrose et al., 2009; Hentz et al., 2014). 

Surface exposures of the Woodbine Group form a narrow, 
irregular band up to 32 km wide and 100 m thick, stretch-
ing from central Texas northward into southern Oklahoma 
(Dodge, 1969; Oliver, 1971; Johnson, 1974; Trudel, 1994). 
Woodbine Group surface exposures, particularly in the 
DFW area (Figure 1), include multiple subdivisions that 
have undergone numerous revisions, with the number 
and composition of subunits varying with location and in-
vestigation (Denne et al., 2016 and references therein). In 
the study area, current stratigraphic relationships indicate 
that the Woodbine Group unconformably overlies the 
Grayson Marl (Washita Group, Figure 1) and is overlain by 
deposits of the Eagle Ford Group (Oliver, 1971; Johnson, 
1974; Ambrose et al., 2009). The Woodbine Group is di-
vided into the lower Dexter sand comprising deposits of 
marginal-marine and fully marine depositional systems, 
and the Lewisville Formation, comprising distal coastal 
plain deposits (Bergquist, 1949; Dodge, 1952; Dodge, 
1968; Dodge, 1969; Johnson, 1974; Oliver, 1971; Powell, 
1968; Ambrose et al., 2009). Identification of these units 
in outcrop is based primarily on facies characteristics; 
however, Woodbine Group subunits can be difficult to 
identify in well logs (Hentz et al., 2014). The AAS exam-
ined here is typically placed within the lower to middle 
Lewisville Formation based primarily on lithostratigraphic 
similarity to deposits of that subunit, and the presence of 
gastropod specimens referable to Anchura and Gyrodes 
(Stephenson, 1952).

The age of the Woodbine Group and its internal divisions 
is debated, in part due to different workers utilizing dif-
ferent primary sources (surface exposure vs. subsurface 
cores) and a variety of methodologies (lithostratigraphy, 
biostratigraphy, sequence stratigraphy). Based on se-
quence stratigraphic and chronostratigraphic data depo-
sition of the Woodbine Group began in the middle-early 
Cenomanian (Ambrose et al., 2009; Adams & Carr, 2010; 
Donovan et al., 2016; Vallabhaneni et al., 2016). At least 
some portion of the early Cenomanian is missing from ter-
restrial deposits (Jacobs & Winkler, 1998). Age estimates 

for Cretaceous strata deposited along the CWIS typically 
rely heavily on marine invertebrate biostratigraphic zones, 
requiring precise correlation with biostratigraphy of ter-
restrial units in order to be useful (Jacobs & Winkler, 1998). 
Consequently, because Woodbine deposits are transi-
tional shallow-marine to continental-terrestrial there is lit-
tle direct data (marine invertebrates, etc.) for estimating 
the age of most intervals, and data points are often small, 
isolated outcrops that are difficult to correlate. Lee (1997) 
identified the ammonite Conlinoceras tarrentense from an 
outcrop in Bear Creek near the Dallas Fort Worth airport 
assigned to the Lewisville Formation, providing a mini-
mum age for the Woodbine of early middle Cenomanian 
(approximately 95-96 MY) (Stephenson, 1952; Kennedy & 
Cobban, 1990; Hentz et al., 2014; Denne et al., 2016). 
However, conflicting evidence suggests that some por-
tions of the Lewisville Formation may be as young as late 
Cenomanian-early Turonian (Christopher, 1982; Kennedy 
& Cobban, 1990; Jacobs et al., 2005; Ambrose et al., 
2009; Cloos, 2018). The Lewisville Formation (Figure 1) is 
typically identified at the surface based on lithostratigra-
phy, primarily by relatively high mud/silt content and rela-
tively low sandstone content. However, other intervals of 
the Woodbine, including parts of the underlying Dexter 
Formation can have similar lithostratigraphic characters, 
and are not chronostratigraphically Lewisville equivalent, 
(Ambrose et al., 2009; Denne et al., 2016). Regardless 
of the actual age(s) of these deposits, examples such as 
these serve to illustrate the problems with using litho-
stratigraphic criteria to correlate and/or assign ages to 
limited and isolated outcrop exposures of complex, conti-
nental-terrestrial to shallow-marine deposystems.

With respect to biostratigraphy, Hedlund (1966) was the 
first to document the fossil pollen assemblages of the Red 
Branch Member of the Woodbine in Oklahoma, located 
stratigraphically near the base of the Lewisville Formation 
(Bergquist, 1949; Stephenson, 1952; Denne et al., 2016). 
Hedlund (1966) identified 75 palynomorphs, divided 
into five assemblages dominated by pteridophytes and 
angiosperms, and interpreted species as those from a 
wet, tropical climate regime. Palynomorphs have rarely 
been used for Woodbine Group biostratigraphic correla-
tion, despite being widespread. For example, the Tarrant 
Member was moved from the overlying Eagle Ford Group 
to the Lewisville Formation of the Woodbine Group 
based, in part, on the similarity with Woodbine palyno-
morph assemblages (Stephenson, 1952; Brown & Pierce, 
1962; Christopher, 1982; Denne et al., 2016). However, 
many palynomorphs are those of long-lived taxonomic 
groups of little biostratigraphic value. Christopher (1982) 
used the presence of Complexiopollis and the absence 
of Atlantopollis to identify a temporal relationship be-
tween the Arlington Formation and Lewisville Formation, 
supporting the placement of the Arlington as a member 
within the Lewisville Formation (Denne et al., 2016). More 
recently Cloos (2018) sampled three separate Woodbine 
Group localities along a north-south transect, finding a 
substantial overlap of palynomorph groups between each 
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site, particularly the Cuppressaceae, cycads, ferns, and 
some angiosperms, which thrived under a hot, humid 
subtropical to tropical climate (Cloos, 2018). An import-
ant finding documents the first occurrence of triporate 
pollen of a Normapolles affinity (?Pseudoplicapollis sp.), 
previously unknown from the Woodbine Group (Cloos, 
2018). Pseudoplicapollis first appears in the early to mid-
dle Turonian, which should indicate a younger age than 
is currently understood for Woodbine Group deposits in 
general (Christopher, 1979).

 3.  Material and methods

 3.1. Study area and sampling met hodology

The AAS outcrop consists of an approximately 200 m long 
and 5 m-thick outcrop belt, with the greatest fossil con-
centrations found in a main quarry that is 2.5 m thick and 
about 50 m long (Figure 2). Strata dip at approximate-
ly 5˚ to the east. Standard sedimentological techniques 
were used to describe the quarry deposits (Figure 3). A 
DJI Mavic 2 pro drone with a 20-megapixel Hasselblad 
camera was used to capture outcrop imagery. Drone im-
agery was imported into Agisoft Metashape software, de-
veloped into 3D models, and exported as orthomosaics 
(Figure 2).

A 70 m long section of the outcrop was chosen for paly-
nological sampling including the area where most macro-
fossils have been recovered. The location of each profile 
was selected to maximize the vertical extent of facies ex-
posure and/or clarity of borders between facies (Figure 4). 
The relative position of each section was marked accord-
ing to a meter-square grid system used for recording the 
location of fossils uncovered in the quarry, which is an-
chored by a permanent, georeferenced origin stake. GPS 
coordinates for each section were also recorded using a 
handheld Garmin GPS unit. A total of 31 samples of 15-
20 g each were collected from fresh surface exposures at 
different heights measured from the base of the exposure 
to capture all facies and facies changes in the outcrop 
(Figure 3). Because of the structural dip of bedding in 
the outcrop belt, samples taken from the same measured 
height from base along the strike of the outcrop may not 
correspond to the same facies association, however facies 
association changes were noted during sample collection 
and samples were placed into the corresponding associa-
tion, and stratigraphic height above AAS base (Figures 3 
and 4). The location of each sampled section is shown in 
Figures 2 and 4.
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 3.2. Palynological sample preparation and analysis

We applied a traditional acid preparation technique 
for this study, e.g., hydrochloric acid (10% HCl) and hy-
drofluoric acid (70% HF) maceration, then centrifugation 
in a heavy liquid (ZnBr2 · H2O), and oxidizing of the organ-
ic residue using 10% solution of NH4OH as needed. We 
used this technique because samples were indurated, and 
most studies from similar time intervals used it. A com-
plete description of sample preparation and analysis is 
provided in Supplement 1. We did this to ensure that the 
assemblages recovered from the AAS section are compa-
rable with assemblages from similar stratigraphic intervals 
analyzed by others. Data for select taxa discussed here 
are available in Supplement 2. The original palynological 
dataset and detailed results are available in Lorente et al. 
(2023). 

 4. Res ults

 4.1. Sedimentology

Four Facies Associations (FA A-D) are described and in-
terpreted for the AAS quarry along with two previously 
undescribed intervals located below and above the quar-
ry succession (Table 1). The stratigraphic column of the 
AAS outcrop succession highlights FA characteristics, FA 
stacking, inclusions, flora, fauna, and interpreted paleo-
environments at the quarry (Figure 3).

 4.1.1. Facies Association BQ (FA-BQ)

Located stratigraphically below the AAS quarry, FA-BQ 
are deposits previously described but currently covered 
by modern development along with equivalent stra-
ta exposed in an unnamed creek located ~120 m north 
of the quarry (Figures 3 and 5). Facies, trace fossils, and 
stratal architectures of the sand-rich and heterolithic inter-
vals (Table Facies Associations) are interpreted to record 

Figure 2 | Overview of sedimentary exposures at the Arlington Archosaur Site. (A) Overhead composite drone image of the entire 
exposure with inset showing location of sampled sections in B. (B) Ground-level view of exposures, looking north, with the location 
of stratigraphic columns sampled for palynological analysis. (C) Interpretation of facies association distribution and extent across the 
sampled portion of the outcrop belt.
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deposits of subaqueous terminal distributary channels or 
tidal channels along a subaqueous delta front (Buatois 
et al., 2005; Olariu et al., 2005, Olariu and Bhattacharya, 
2006; MacEachern & Bann, 2008; Flaig et al., 2019). The 
finest-grained deposits represent shallow-marine to con-
tinental-terrestrial transitional environments off-axis of 
the channels or deltas along the distal coastal plain (e.g., 
Flaig et al., 2011; van der Kolk et al., 2015).

 4.1.2. Facies Association A (FA-A)

FA-A are the first deposits considered to be within the 
AAS quarry above the base datum, and form the pri-
mary fossil quarry containing the majority of specimens 
recovered (Figure 3, Table 1). FA-A preserves abundant 
plant material, including broad lenticular mats of feature-
less coalified remains, 15-20 cm wide compressed but 
well-preserved coalified trees, and permineralized wood 
(Main, 2013). A large conglomeration of over 20 coalified 
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tree trunks 0.5–4.0 m long is found near the base of FA-A 
(Figure 6). Aligned in a NE-SW direction, these trunks 
likely represent transported and redeposited wood (Main, 
2013). Several well-preserved fern megaspores were also 
identified (Figure 6). Teredolites, a burrow attributed to 
wood-boring clams that thrive in waters of brackish to 
fully marine salinities (Buntin et al., 2022), are associat-
ed with the transported wood (Figure 6). The presence 
of Teredolities in isolated, transported wood indicates 
proximity to brackish or fully marine waters (Buntin et 
al., 2022). FA-A records a transition from the underlying 
shallow marine deposits and possible shallow-marine 
brackishwater lagoonal or swamp deposits into terrestrial 
sourced deposition along a distal coastal plain wetland in 
swamp, marsh, lacustrine, paludal, or palustrine environ-
ments. A nearby fluvial system that transported sediment, 
trees, and plants is evident. Teredolities bored logs in-
dicate adjacent waters with brackish-to marine salinities 
containing wood-boring clams (Buntin et al., 2022).

 4.1.3. Facies Association B (FA-B)

FA-B comprises sandy siltstone containing abundant car-
bonaceous rhizoliths (Figure 3, Table 1) including several 
20-30 cm wide paleo root systems associated with abun-
dant plant fragments (Figure 6), some of which are encased 
in siderite concretions (Noto, 2015; Adams et al., 2017). 
Dinosaur fossils attributed to Protohadros byrdi are found 
in the upper portion of FA-B (Noto et al., 2013; Main et 
al., 2014). Some bones have oysters attached to the bone 
surface or are in close proximity to it (Figure 6). FA-B re-
cords paleosol development, possibly vertisols, or gleyed 
entisols or inceptisols, on a distal coastal plain proximal 
to a fluvial channel with a seasonally-variable water table 
(Retallack, 2001; Flaig et al., 2013). This interpretation is 
consistent with prior paleosol analyses (Andrzejewski & 

Tabor, 2020); however, new evidence of abundant oysters 
suggests proximity to marine waters and a marine flood-
ing event with a transition to shallow-marine deposition at 
the top of FA-B. 

 4.1.4. Facies Association C (FA-C)

FA-C consists of laterally extensive (100 m) siderite-ce-
mented silt nodules and erosionally-based, siderite-ce-
mented sand-rich slabs (Figure 3, Table 1). Planolites, 
Skolithos, and Thalassinoides are common and penetrate 
into uppermost FA-B. Rare gastropod and bivalves sug-
gest occupation by brackishwater to marine-salinity toler-
ant organisms (Buatois et al., 2005; MacEachern & Bann, 
2008). FA-C is interpreted as a shallow-marine sandbody, 
such as a splay-delta overlying a paleosol (FA-B), and the 
result of a marine flooding surface.

 4.1.5. Facies Association D (FA-D)

FA-D is dominated by interbedded, fine-grained sand-
stone (5-10 cm thick) and siltstone (0.1-0.5 cm thick). The 
interval also includes an erosionally-based sandstone 
overlain by a fining-upward succession (Figure 3, Table 
1). FA-D is interpreted as a shallow-marine tidal flat or 
mudflat deposit incised into by a tidal channel with prob-
able associated distributary mouth bar deposits (Fan & Li, 
2002; Flaig et al., 2019).

 4.1.6. Facies Association AQ (FA-AQ)

Deposits above the AAS quarry top datum (FA-AQ) in-
clude mudstone, heterolithic siltstone and sandstone, 
and an erosionally based trough cross-stratified sand-
stone capped by heterolithics. This interval is interpret-
ed as distal floodplain deposits, possibly from a lake or 
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Figure 4 | Simplified stratigraphic section showing locations of sampled columns and distribution of samples within facies associations. 
Numbers within each column denote height of sample above base datum in centimeters. Lateral distance between sampled columns is 
measured from georeferenced origin stake in meters (not to scale).
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Facies Association 
Designation Ichnology Sedimentary Characteristics Inclusions and Diagnostic Features Interpreted Depositional 

Environment 

FA-BQ (Below AAS Quarry) Cy, Op, Pa, Pl, 
Rz, Sk, Th

Fine-grained tough cross-
stratified sandstone 
overprinted by heavy 
bioturbation. Heterolithic 
current-ripple laminated 
sandstone interbedded with 
gray siltstone along with gray, 
silt-rich mudstone and dark 
brown current-ripple laminated 
sandy siltstone.

Shark teeth, fish fossils, decapod remains, 
plant fragments, wood fragments and wood 
impressions, siderite, jarosite. Incisional 
features including reactivation surfaces overlain 
by stacked barforms and heterolithics. Soft 
sediment deformation.

Proximal tidal delta front to 
distal delta plain.

FA-A (Base AAS Quarry) Td Dark brown mudstone, 
dark gray to black highly 
carbonaceous mudstone, and 
coal.

Sulfur, pyrite, gypsum, plant fragments, 
charcoal, coalified wood, tree trunks, 
permineralized wood, fern megaspores. 
Vertebrate and invertebrate remains and 
coprolites. Rare slickensides.

Transitional shallow-marine and 
brackish lagoonal to swamp-
marsh, lacustrine, paludal, 
palustrine.

FA-B (AAS Quarry) Td Blocky gray sandy siltstone and 
light brown sandy siltstone.

Carbonaceous rhizoliths, charcoal, plant 
fragments, siderite, clastic dykes. Rare shells 
of aquatic invertebrates, hadrosaurids, oysters, 
coprolites. Blocky peds with slickensides.

Paleosols.

FA-C (AAS Quarry) Pl, Sk Th Siderite-cemented siltstone 
and sandstone.

Plant fragments, wood fragments, charcoal, 
siderite. Gastropods, bivalves, vertebrate 
remains. Massive.

Shallow-marine splay-delta.

FA-D (Top AAS Quarry) -- Interbedded, fine-grained 
white sandstone and gray 
siltstone including trough cross-
stratification, current ripple 
cross-lamination, and wavy-to 
lenticular bedding.

Plant and wood fragments, charcoal, mud 
rip-up clasts, carbonaceous rip-up clasts, 
carbonaceous drapes, mud-drapes, siderite, 
jarosite. Vertebrate remains. Rare marine 
invertebrates. Rare rhizoliths.

Tidal flat or mudflat including 
tidal channel and interbedded 
mouth bar deposits.

FA-AQ (Above AAS Quarry) -- Interbedded sandstone and 
gray mudstone with trough 
cross-stratification, current-
ripple lamination, and wavy to 
lenticular bedding.

Mud clasts, carbonaceous rip-up clasts, 
carbonaceous drapes, mud-drapes, plant 
fragments, wood fragments, wood impressions, 
rare logs.

Distal floodplain including 
lake/pond, splay/levee, and 
distributary channel deposits.

Table 1 | Facies Association Table for strata exposed at and around the Arlington Archosaur Site.
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pond overlain by splay or levee deposits (e.g., Flaig et al., 
2011). A distal fluvial-distributary channel with some mod-
ification of deposits by tides incises into the underlying 
deposits (Flaig et al., 2011, 2019, 2022). This uppermost 
interval records more proximal, coastal plain paleoenvi-
ronments compared to the underlying marine deposits of 
FA-D.

This overall stratigraphic evolution (Figure 3) indicates 
that paleoenvironments recurrently fluctuated from shal-
low-marine to continental-terrestrial. It is impossible to 
deduce from the limited stratigraphy if these fluctuations 
are related to allogenic (outside of the system) or auto-
genic (within the system) processes. The AAS succession 
is progradational overall, from heavily bioturbated shal-
low-marine sandstone and heterolithics at the base to 
fluvial-distributary channel and floodplain deposits at the 
top.

 4.2. Vertebrates

The following is a summary of vertebrate fossils and their 
reconstructed paleoenvironment(s). A detailed listing of 
currently described taxa, taphonomic disposition, and 
paleoenvironmental interpretations are included in Table 
2. FA-BQ contains vertebrate fossils consistent with near-
shore, shallow marine environments, including teeth and 
vertebrae representing large-, medium-, and small-bod-
ied elasmobranchs and osteichthyans (Main, 2013; Noto, 
2015; Ostrowski & Noto, 2017). 

Freshwater conditions in FA-A are supported by the pres-
ence of salt-intolerant osteichthyans such as lungfish, 
non-marine turtles, amphibians, and a semiaquatic croc-
odyliform (Main, 2013; Adams et al., 2017; Drumheller 
et al., 2021; Adrian et al., 2019, 2021, 2023). Brackish 
or marine influence is indicated by elasmobranchs and 
osteichthyans, including individuals a meter or more in 
length (Noto, 2015; Ostrowski & Noto, 2017). Numerous 
specimens of dinosaurs, terrestrial turtles, mammals, 
and non-marine snakes indicate close proximity to land 
(Ostrowski & Noto 2017, 2023; Adrian et al., 2019; Noto 
et al., 2019, 2022). These taxa indicate a wetland system 
along a distal floodplain, proximal to the coastline, with 
fluctuating freshwater to brackish conditions.

The vertebrate fossils of FA-B belong primarily to a 
large-bodied (6–7 m length) herbivorous dinosaur that is 
widely distributed within the Lewisville Formation (Main, 
2013; Main et al., 2014; Noto, 2015). Isolated theropod 
material is also present (Noto et al., 2022). Standing water 
bodies were nearby on the landscape, evidenced by small 
elements belonging to teleosts, amphibians, and croco-
dyliforms. FA-B is interpreted as representing a primarily 
terrestrial paleoenvironment, such as a delta plain.

Fossils from FA-C are rare and include elasmobranchs and 
osteichthyans, indicating a return to marine conditions 
(Main, 2013). Recovery of crocodyliform teeth indicates 

continued continental influence and/or reworking of ter-
restrial sediments (possibly from FA-B) during deposition. 

Vertebrate fossils known from FA-D are composed of 
brackish-tolerant elasmobranchs, mixed with freshwater–
associated crocodyliform, amphibian, and osteichthyan 
remains (Main, 2013). This evidence suggests continen-
tal-terrestrial distal floodbasin or lagoonal shoreline, with 
a nearby fluvial distributary channel. 

 4.3. Palynology

The following palynological associations are used to re-
fine paleoenvironmental interpretations based on lithofa-
cies, ichnology, and paleontology, and limit the age of the 
exposure. We identified and counted as many terrestrial 
pollen, spores, algal and fungal remains, and dinoflagel-
late cysts as possible. Palynological organic matter analy-
sis was out of the scope of this work. Based on the pres-
ence of dinoflagellate cysts and the pollen assemblage, 
both marine and continental-terrestrial deposits are con-
firmed to be present.

 4.3.1. AASP 3-4 section

The assemblage observed in the AASP 3-4 combined 
column comprises a rich and diversified terrestrial pal-
ynoflora and a less diversified, but nonetheless present 
dinoflagellate cyst assemblage. The terrestrial sporo-
morph assemblage contains over eighty spore and pol-
len species, with diversity per sample reaching between 
16 and 35 species. These assemblages are characterized 
by abundant spores, mostly from pteridophytes and pol-
len from gymnosperms, mostly conifers and, to a less-
er extent, angiosperms, although some samples show 
an increase in angiosperm pollen (Lorente et al., 2023, 
Figures 4–7). In addition, there is an apparent increase 
in dicotyledon angiosperm pollen from FA-B up-section. 
Dinoflagellate cysts are present throughout the column 
but in lower numbers than sporomorphs, with twenty-four 
species identified, and a diversity from 1 to 14 species 
per sample.

A summary of some characteristics observed in the assem-
blages in the combined section AASP 3-4 (Supplement 2; 
Lorente et al., 2023 Figure 3, p. 8) include:

 - The assemblage richness (abundance and diversity) 
along the section is highly variable. Still, more than 
half of the spore species in each sample are from 
ferns or other seedless plants.

 - Pteridophyte (mostly ferns) spores are the most var-
ied single component of the assemblage through-
out the section, i.e., various species of Cyathidites, 
Appendicisporites, and Cicatricosisporites, as well as 
Pilosisporites ericius that is abundant in the lower part 
of FA-B. Spores from other botanical groups, e.g., ly-
cophytes and bryophytes, are present but scarcer.
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Figure 6 | Sample set of fossils used for indicating paleoenvironmental and depositional conditions. (A) Vertebral arch attributed to the 
dinosaur Protohadros (DMNH 2013-07-0454) with oyster attachment surfaces (white arrow). Scale in centimeters. (B) Dorsal(?) vertebra 
attributed to Protohadros (DMNH 2013-07-0350) with oyster attachment surfaces (white arrows). Scale in centimeters. (C) Infilled burrows 
of the wood-boring bivalve Teredolites in a wood specimen (uncatalogued specimen). Scale in millimeters. (D) Decapod fossil recovered 
from the creek bed north of the AAS outcrop (uncatalogued specimen). Scale in centimeters. (E) Fern megaspores recovered from 
sediment screenwashing of FA-A (uncatalogued specimens). Scale bar is 1 millimeter. (F) Invertebrate burrows (DMNH 2013-07-0701) 
from underlying deposits south of the AAS outcrop (FA-BQ). Scale in centimeters. (G) Charcoalified root system from the upper part of 
FA-B. Scale bar is 10 centimeters. (H) Multiple carbonized logs found in situ in lower FA-A. Arrow points north and scale is approximately 
10 centimeters.
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Table 2 | Vertebrate Association Table for strata exposed at and around the Arlington Archosaur Site.

Facies Association 
Designation Vertebrate Taxa Identified Taphonomy Interpreted 

Paleoenvironment References

FA-BQ (Below AAS Quarry) Elasmobranchs
cf. Cretodus sp. 
Odontaspididae indet.
Onchopristis dunklei

Osteichthyes 
Ichthyodectiform indet.
Pycnodont indet.
Elopomorpha indet.

Specimens isolated and 
fragmentary with evidence 
of modest to high transport. 
Mix of allochthonous and 
parautochthonous.

Near shore, shallow marine Main, 2013; Noto, 2015; 
Ostrowski & Noto, 2017

FA-A (Base AAS Quarry) Elasmobranchs
Hybodont indet.
cf. Ptychodus
cf. Pseudohypolophus

Osteichthyes
Enchodus
Pycnodont indet.
Ichthyodectiform indet.
Amiid indet.
Lepisosteid indet.
Ceratodus carteri

Amphibians
Caudata indet. 
Anura indet.

Turtles
Gehennachelys maini
Pleurochayah appalachius
Helochelydridae indet.
Trionychidae indet.
Protostegidae indet.

Crocodyliforms
Deltasuchus motherali
Woodbinesuchus byersmauricei
Terminonaris sp.
Scolomastax salhsteini
Eusuchia indet.
Crocodyliformes indet.

Snake
cf. Coniophis

Dinosaurs
Carcharodontosauria indet.
Tyrannosauroidea indet.
Dromaeosauridae indet.
Protohadros byrdi

Mammals 
Multituberculate indet.
Cladotheria indet.

Skeletal elements well-
preserved but disarticulated 
and isolated (up to 3 m distant); 
partially articulated specimens 
rare. Evidence of low-energy, 
short-distance transport 
with no clear orientation. 
Crocodyliform tooth marks on 
some remains. Autochthonous 
or parautochthonous.

A transitional shallow-marine 
to continental-terrestrial 
deposystem including 
wetlands along a distal 
floodplain, proximal to the 
coastline.

Main, 2013; Main et al., 2014; 
Noto, 2015; Ostrowski & Noto, 
2017, 2023; Adams et al., 
2017, 2023; Noto et al., 2019, 
2022; Adrian et al., 2019, 
2021, 2023; Drumheller et al., 
2021; Noto et al., 2023a

FA-B (AAS Quarry) Osteichthyes 
Pycnodont indet.
Lepisosteid indet.
Teleostei indet.

Crocodyliform
cf. Deltasuchus motherali
Crocodyliformes indet.

Dinosaurs
Theropoda indet.
Protohadros byrdi

Skeletal elements of 
Protohadros disarticulated but 
associated; representing dense 
axial and limb bones. Low to 
moderate surface weathering. 
Evidence suggests prolonged 
subaerial exposure with short-
distance hydraulic transport 
and winnowing. Autochthonous 
or parautochthonous.

Delta plain with small water 
bodies

Main, 2013; Main et al., 2014; 
Noto, 2015; Noto et al., 2013, 
2022, 2023b; Noto, 2015; 
Adams et al., 2023

FA-C (AAS Quarry) Elasmobranchs
cf. Cretodus sp.
Hybodont indet.

Osteichthyes
Pycnodont indet.

Crocodyliforms
Crocodyliformes indet.

Specimens isolated and 
fragmentary with evidence 
of modest to high transport. 
Possible reworking of some 
elements from lower sediments 
(FA-B) during deposition. 
Mix of allochthonous and 
parautochthonous.

Near shore, shallow marine Main, 2013; Noto, 2015

FA-D (Top AAS Quarry) Elasmobranchs
Hybodont indet.
cf. Pseudohypolophus
Onchopristis dunklei

Osteichthyes
Teleostei indet.

Amphibians
Caudata indet.

Crocodyliforms
Crocodyliformes indet.

Specimens isolated and 
fragmentary with evidence 
of modest to high transport. 
Mix of allochthonous and 
parautochthonous.

Continental-terrestrial distal 
floodbasin or lagoonal 
shoreline with a nearby fluvial 
distributary channel.

Main, 2013; Noto, 2015

FA-AQ (Above AAS Quarry) No vertebrate remains have been 
recovered

No vertebrate remains No vertebrate remains
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 - There are occasional occurrences of gymnosperm pol-
len, i.e., Cycadopites sp. in FA-A; Rugubivesiculites 
rugosus (Supplement 3, Plate 4) in FA-B; and bisac-
cate pollen from conifers is abundant, especially in 
the upper part of FA-B and FA-D.

 - There are occasional occurrences of angio-
sperm pollen, i.e., Aquilapollenites cf. psilatus 
(Aquilapollenites group) in FA-A, Aesculiidites dubius 
in FA-B, and Cupuliferoidaepollenites microscabratus 
(Supplement 3, Plate 6) that is relatively abundant in 
uppermost FA-B and throughout FA-D.

 - Notable dinoflagellate cyst occurrences are: 
Oligosphaeridium pulcherrimum in FA-A and the low-
er part of FA-B, two different species of Florentinia 
in lower FA-B are abundant, and the occurrence of 
Kiokansium unituberculatum in the upper part of FA-
B. Also relevant is the presence of Cyclonephelium 
membraniphorum (included in the Ccm morpholog-
ical plexus) throughout the section (Supplement 3, 
Plate 1). The maximum dinoflagellate cyst diversity 
reached 14 species at AASP 3-4, 127 cm.

 4.3.2. AASP 1-2 section

The assemblage observed in the AASP 1-2 combined 
column comprises a varied terrestrial sporomorph assem-
blage and a less diversified dinoflagellate cyst assem-
blage, similar in proportions to AASP 3-4.

The absolute abundance of specimens per major palyno-
morph group is variable, with the lower part of FA-A hav-
ing the most abundant assemblages, although the abun-
dance decreases towards the top of the facies association 
(Supplement 2). FA-B is moderately rich, and FA-D shows 
a strong increase in sporomorphs (terrestrial) and a de-
crease in the abundance of dinoflagellate cysts (marine).

The terrestrial sporomorph assemblage is varied, with 
over eighty species, including 38 spore species and 
42 pollen species (Lorente et al., 2023 Figure 9, p. 12). 
The spores and pollen assemblages are dominated by 
spore species of the Cyatheaceae (Cyathidites spp.). 
Conifer pollen is abundant. The angiosperm pollen from 
Cupuliferoidaepollenites microscabratus is abundant 
at the base of FA-A but not in other facies associations. 
Cluster analysis of the sporomorph assemblage shows 
two major clusters: one that includes the samples in FA-A 
and the lowermost part of FA-B, and a second cluster that 
includes the samples in the uppermost part of FA-B and 
FA-D (Lorente et al., 2023, Figures 8 and 9, p. 11 and 12 
respectively).

Dinoflagellate cysts are present throughout the section 
but in lower quantities than sporomorphs. Twenty-six di-
noflagellate cyst species were identified, three species of 
acritarchs, and seven species of freshwater algae, as well 

as different types of fungal remains (Lorente et al., 2023, 
Figure 10, p. 13).

A summary of some characteristics observed in the as-
semblages in the combined section AASP 1-2:

 - The assemblage richness (abundance and diversity) 
along the section is highly variable. Still, more than 
half of the species in each sample spores are from 
ferns or other seedless plants.

 - Pteridophyte (mostly ferns) spores are the most var-
ied single component of the assemblage throughout 
the section. Spores from other botanical groups, e.g., 
lycophytes and bryophytes, are present but scarce.

 - Gymnosperms are mainly represented by pollen from 
conifers, including Abietineaepollenites spp.

 - Angiosperm pollen of the Aquilapollenites group are 
conspicuous along the section, represented by up to 
four different species, e.g., Aquilapollenites cf. psi-
latus, Aquilapollenites psilatus, Aquilapollenites tur-
bidus, and Aquilapollenites sp. Other angiosperm 
pollen present includes Cupuliferoidaepollenites mi-
croscabratus, abundant only in FA-A.

 - General assemblage composition and abundance are 
similar to that observed in the AASP 3-4 combined 
section.

 - There were no Normapolles detected in the section.

 - Dinoflagellate cysts from the Ccm morphological 
plexus are present in FA-A, with most dinoflagellate 
cyst occurrences restricted to FA-A and FA-B.

 4.3.3. AASP 6-7 section

The assemblages observed are less rich in palynomorph 
species than the ones in combined sections AASP 1-2 and 
AASP 3-4, mainly due to AASP 6-7 column being restrict-
ed to FA-A and lowermost FA-B (Supplement 2).

 - There are a total of nine spore species, with the 
Cyatheaceae (tree fern) spores being largely domi-
nant, including Cyathidites spp. and Cyathidites aus-
tralis. Other abundant Pteridophytes spores include 
Cicatricosisporites spp., Appendicisporites mateso-
vae, Concavisporites rugulatus - Gleicheniidites se-
nonicus, 

 - There are seventeen pollen species, dominated by the 
pollen of conifers, which is similar to the assemblag-
es in sections AASP 1-2 and AASP 3-4. Gymnosperm 
representation is dominated by conifer pollen, in-
cluding Rugubivesiculites cf. rugosus, and others 
like Cycadopites sp. / Ginkgocycadophytus sp. and 
Inaperturopollenites hiatus.
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 - Angiosperm pollen is represented by monocots 
(e.g., palm types) such as Psilamonocolpites sp. 
Other angiosperm pollen is from the Aquilapollenites 
group, including Aquilapollenites cf. psilatus and 
Aquilapollenites psilatus. Also present are other mis-
cellaneous pollen types broken or poorly preserved.

In the AASP 6-7 section, the acritarch Leiosphaeridia 
sp. is very abundant, as well as the dinoflagellate cyst 
Epelidosphaeridia cf. spinosa, present in lesser amounts 
are Cyclonephelium membraniphorum (Ccm morpholog-
ical plexus), Florentinia cf. khaldunii, and miscellaneous 
dinoflagellate cysts (Lorente et al., 2023, Figure 11, p. 15). 

 4.3.4. AASP 5 section

Section AASP 5 consists of a single sample collected from 
FA-A, representing the least diverse and poor assemblage 
observed in the entire AAS site (Supplement 2). There the 
sporomorph group is represented by Cyathidites spp., 
Cyathidites australis, Inaperturopollenites hiatus, and bi-
saccate pollen (conifers).

The terrestrial sporomorph assemblage has twenty total 
species (7 spore species and 13 pollen species) which is 
about a quarter of the richness of assemblages observed 
in AASP 1-2 and AASP 3-4. The spore assemblage is dom-
inated by species of Cyatheaceae (Cyathidites spp.), as in 
the other sections. Other important and very abundant 
components of the assemblage are the conifer (gymno-
sperms) pollen. The pollen from Inaperturopollenites hi-
atus (Taxodiaceae) is more abundant in section AASP 5 
than in any other section. The Leiosphaeridia sp. acritarch 
is very abundant. Abundant also is the dinoflagellate cyst 
Trithyrodinium cf. suspectum and, in smaller amounts, 
Cyclonephelium membraniphorum (Ccm morphologi-
cal plexus), Oligosphaeridium pulcherrimum, and other 
miscellaneous dinoflagellate cysts. (Lorente et al., 2023, 
Figure 12, p. 17). All these characteristics may indicate 
brackish to shallow marine conditions in FA-A, near the 
AASP 5 location. 

Characteristics of the assemblage in sample AASP 5 can 
be summarized as follows:

 - The assemblages only represent FA-A. The assem-
blage richness (abundance and diversity) is lower than 
in AASP 1-2 and AASP 3-4. Still, the most abundant 
components are spores from ferns or other seedless 
plants, followed by the pollen of conifers.

 - The presence of relatively abundant Taxodiaceae 
(Inaperturopollenites hiatus) pollen, together with a 
less varied but relatively rich assemblage of dinofla-
gellate cysts and very low amounts of freshwater al-
gae, distinguish this assemblage from those recorded 
in AASP 1-2 and AASP 3-4.

 - As in the other sections, there were no Normapolles 
detected.

 - Dinoflagellate cysts from the Ccm morphological 
plexus are present, as well as Oligosphaeridium pul-
cherrimum, Epelidosphaeridia cf. spinosa and few 
other dinoflagellate cysts.

  5. Discussion

 5.1. Sedimentology and paleontology

 The sedimentology and ichnology of the AAS site, and 
the underlying and overlying stratigraphy, provides a 
basic framework for paleoenvironmental interpretation 
(Table 1, Figure 3). The vertebrate paleontology pro-
vides additional evidence refining the relative influence 
of marine vs. continental input throughout the AAS sec-
tion (Table 2). This record indicates fully marine conditions 
prevailed during deposition of FA-BQ, transitioning to 
brackish water shallow marine deposits and ultimately to 
continental-terrestrial distal floodplain wetland deposits 
in FA-A. Prevalence of a large-bodied dinosaur and lim-
ited aquatic taxa in FA-B indicate deposition on a delta 
plain. FA-C marks the return of near shore, fully marine 
conditions. The mixture of freshwater and brackish-toler-
ant taxa in FA-D likely represents a distal floodbasin or 
lagoonal shoreline with fluvial input. Although robust pa-
leoenvironmental interpretations can be made from the 
sedimentology, ichnology, and vertebrate paleontology, 
the palynological data provide the highest-resolution re-
cord, which can be used to significantly refine paleoenvi-
ronmental interpretations both within and between facies 
associations.

 5.2. Depositional Model for the AAS

The palynomorph assemblage of any sedimentary suc-
cession commonly has three main components: in situ 
palynomorphs, redeposited contemporaneous palyno-
morphs, and reworked palynomorphs from older sedi-
ments. Paleoenvironmental interpretation based on pal-
ynological results is made by examining the different pal-
ynomorph group tendencies in abundance and diversity 
throughout the section, rather than relying on isolated 
samples (See Supplement 4, Palynomoprhs as sedimen-
tary particles). 

Assuming normal depositional conditions and no signif-
icant reworking of older sediments, to determine which 
components of the assemblage are in situ (hence repre-
sent a "true" environmental signal) and which elements 
are transported (representing the signal from the greater 
drainage basin), the AAS section must be analyzed from a 
"source to sink" point of view (Figure 7). The source and 
transfer areas are all locations topographically above the 
base level, where there is a balance between deposition 
and erosion (Catuneanu, 2006). The base-level surface is 
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typically either the water table (continental-terrestrial) or 
the ocean surface (marine).

A model for interpreting the palynological associations 
found in different depositional paleoenvironments of the 
AAS site is shown in Figure 8. The diagram illustrates how 
palynomorphs were dispersed across the topographic 
profile, from source to sink, i.e., from uplands to the shal-
low marine shelf or open marine basin. The model only 
includes palynomorphs found at the AAS site.

Very few samples in the AAS sections represent exclu-
sively terrestrial paleoenvironments since most assem-
blages bear marine palynomorphs, but it includes some 
levels that might be tidally influenced. From an abun-
dance-of-specimens point of view, these assemblages are 
dominated by terrestrial palynomorphs.

Signals observed in the palynomorph assemblage are 
from at least three parts of the source and transit areas of 
the source-to-sink system. They are evident in the assem-
blage (Figures 7 and 8) as follows:

 - Sporomorphs in FA-A and lower part of FA-B indicate 
a vegetation signal from wetlands and swamp forest, 
based on the abundance and species of pteridophyte 
spores and conifer pollen, including the presence of 
Taxodiaceae pollen.

 - Sporomorphs and other palynomorphs in FA-B (upper 
part) indicate a vegetation signal from fluvial bank’s 
forest, ponds or lakes, wetlands, marshes, support-
ed by a strong increase in the amount of fresh water 
plant spores and algae. A signal from salty swamps 
is supported by sporadic ocurrences of Classopollis 
spp. (Cheirolepidiaceae) known to inhabit brackish or 
even hypersaline coastal marshes (Smith et al., 2024).  

 - Sporomorphs assemblage in FA-D show vegetation 
signals consistent with upland forests and alluvi-
al-fluvial vegetation based on the abundance of fern 
spores and gymnosperm pollen. Also significant, is 
the presence of Cycadopites sp., a pollen type asso-
ciated with cycads which need of beetle pollination 
(Norstog, 2023) and hence have limited pollen dis-
persion. Since living cycads inhabit different habitats 
mainly as components of the forest understory in rain-
forests and seasonally dry forests, or in “grasslands 
forming a kind of savanna” (UCMP, n.d.), its pollen 
may be a signal from widespread tropical lowland(?) 
seasonal forests, or grasslands nearby the sedimenta-
tion locations (sink). 

The AAS section show the presence of spores from float-
ing freshwater ferns and angiosperm pollen in assemblag-
es dominated by pteridophyte spores and conifer pollen 
mixed with a moderately diverse dinoflagellate cyst as-
semblage. The dinoflagellate cysts are the only elements 
considered in situ, representing paleoenvironments in 

the sink area, while the rest of the assemblage represents 
the signal from upland vegetation. These assemblages 
are common in FA-A and the lower part of FA-B (Figures 
7 and 8). A few rich dinoflagellate cyst assemblages are 
mixed with bisaccate spores and smaller angiosperm 
grains, suggesting the influence of shallow marine paleo-
environments in some parts of the section, such as in the 
upper part of FA-B.

 5.3. Evidence for shoreline migration over time

The sedimentology, ichnology, and vertebrate paleontol-
ogy of the study area provide an estimate for millenial 
scale (103–105 years) paleoenvironmental changes, how-
ever time-averaging masks short-term shifts (decadal-cen-
tury scale) in shoreline position and depositional environ-
ment (marine vs. continental) (Martin 1999; Behrensmeyer 
et al., 2000). The paleoenvironmental interpretations de-
rived from palynological analysis confirm interpretations 
derived from sedimentology and paleontology; however 
higher-resolution palynology (cm-scale) reveals additional 
shorter-term paleoenvironmental shifts not evident from 
any other data, providing a fuller picture of the dynamic 
nature of this ecosystem (Figure 8).

The following assemblages were identified based on 
the Harris and Tocher (2003) dinoflagellate cyst assem-
blages related to salinity: Euryhaline assemblages sup-
porting lowered salinities (Cyclonephelium vannopho-
rum and Oligosphaeridium pulcherrimum); Stenohaline 
assemblages supporting only normal marine salinities 
(Oligosphaeridium totum); and Offshore assemblages, 
supporting only normal marine salinities (Cyclonephelium 
membraniphorum). The association found in the AAS 
section is dominated by euryhaline assemblages with 
tolerance to salinity changes (See Supplement 4, 
Paleoecological implications of dinoflagellate cysts), with 
a lower abundance of stenohaline and offshore types. 
Major peaks in dinoflagellate cyst diversity are driven 
primarily by Gonyaulaceans, which increase towards the 
coastline (shallow marine). Smaller peaks in Peridiniacean 
diversity, associated with more open marine environ-
ments, occur immediately before or after Gonyaulacean 
peaks. While the signal is primarily shallow marine, these 
smaller peaks indicate variation in the characteristics of the 
marine water. The oscillations in shallow marine paleoen-
vironments in the AAS section may also indicate variations 
from lower to higher productivity intervals, relative water 
depth, and the amount of nutrients in the water. Increases 
in dinoflagellate cysts that prefer offshore settings (colder 
normal marine water) are evident, e.g., Cyclonephelium 
membraniphorum- compactum, as well as dinoflagellate 
cysts that thrive in shallow marine waters with decreased 
salinity, e.g., Florentinia, Hystrichosphaeridium, and 
Oligosphaeridium.

Dinoflagellate cyst diversity is related to the amount of 
environmental stress, as environmental stress decreas-
es the richness of the dinoflagellate cyst assemblage 
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increases from near-shore to distal-offshore environments 
(e.g., Olde et al., 2015, Dodsworth, 2016). Alternatively, 
specimen abundance may indicate a bloom of individual 
species that thrive in specific conditions. We propose that 
the levels with notable increases in diversity and abun-
dance of the dinoflagellate cyst assemblages (as seen 
in FA-B) and the presence of representatives of the Ccm 
plexus (FA-A and uppermost FA-B) record possible (ma-
rine) flooding surfaces or marine incursions in relation to a 
fixed position along the coastline (Figure 8).

 5.4. Climate conditions during AAS deposition

The palynological dataset provides further insights into 
climatic conditions during deposition of the AAS section. 
The palynology suggests that the climate was cooler and 
less humid at the start of FA-A sedimentation (Figure 8), 
with conditions warming towards the top of FA-A, allow-
ing for the development of conifer-forest communities 
elsewhere in the drainage basin. In the lower part of FA-B, 
upland pollen is evident, with some conifer-forest cover-
ture, indicating relatively warmer temperatures and higher 
humidity. Conditions changed in the middle part of FA-B 
where the warming trend seems to revert to cooler and 
drier conditions, favoring the growth of open savannah 
vegetation. From the upper part of FA-B and continuing 
into FA-D, no clear dominance of any group exists. Still, 
the presence of a more diversified angiosperm population 
that included monocots and dicots may indicate cooler 
and drier conditions, especially towards the top of FA-D 
compared to the warmer and more humid climate record-
ed in the uppermost part of FA-A. 

The climate changes recorded at the AAS section are of 
short duration and most are probably driven by obliquity 
and precession Milankovitch cycles. These results coin-
cide with those from phyllosilicate analyses (Andrzejewski 
& Tabor, 2020), which provide an estimated temperature 
of 27±3 °C for in-situ soil phyllosilicate crystallization tem-
peratures for the middle part of FA-B, with air tempera-
tures being probably lower by a couple of °C (25±3 °C) 
according to authors' estimations. These temperatures, 
although notably hotter than present day, represent a 
relative cooling trend from the 31±3°C (or 29± 3°C air 
temperature) calculated for the Albian-age upper Antlers 
Formation (Andrzejewski & Tabor, 2020). 

The recovered taxa are consistent with the presence of 
predominantly warm and humid conditions during AAS 
deposition, further supporting the extension of tropi-
cal-like (megathermal) conditions into temperate paleo-
latitudes under greenhouse conditions that prevailed 
during the Cretaceous (Noto et al., 2023a). 

In addition to previously reported evidence for mon-
soon-like seasonality, changes in angiosperm and gymno-
sperm abundance appear to capture Milankovitch-scale 
changes in relative temperature and humidity during AAS 
deposition. Furthermore, the cooler and drier conditions 

observed at the base of FA-A correspond to peak abun-
dance of the Ccm morphological plexus, which here we 
associate with onset of the Plenus Cold Event (see next 
section). These associations support the role of a larg-
er-scale mechanism(s), such as Milankovitch cyclicity, driv-
ing these changes.

 5.5. Refinement of Woodbine Group age and strati-
graphic relationships

Woodbine Group strata exposed in the outcrop belt from 
Grayson to Bell counties, TX, were deposited in the west-
ern East Texas Basin, and are separated from coeval sub-
surface deposits to the east by the Mexia-Talco fault zone 
(Ambrose et al., 2009). This stratigraphic discontinuity has 
made outcrop to subsurface correlations challenging, par-
ticularly with regard to chronostratigraphy. The minimum 
age for the Woodbine Group outcrops in the DFW area is 
largely based on the ammonite Conlinoceras tarrantense 
found in Tarrant County (Lee, 1997). However, the pre-
cise stratigraphic relationship of those fossils relative to 
other exposures in the area is difficult to establish. Also, 
the morphospecies Conlinoceras tarrantense includes 
other, formerly separate, species mentioned in older liter-
ature, e.g., Calycoceras (Conlinoceras) gilberti. It is pos-
sible that the Tarrant Co. species C. tarrantense is found 
in more than one stratigraphic interval in the Woodbine. 
Conlinoceras tarrantense has an assigned age of 95.73 
(±0.61) Ma, according to the revised ammonite zonation 
and radiometric ages for the CWIS (Cobban et al., 2006). 
Other authors assign it a slightly younger age of 95.3 Ma 
(Scott et al., 2004). 

Many authors have worked on the complex Cenomanian–
Turonian stratigraphy of the CWIS and NE Texas (Sellards 
et al., 1932; Brown & Pierce, 1962; Christopher, 1982; 
Dodsworth, 2016; Donovan et al., 2016). Dodsworth and 
Eldrett (2019) reported on sections of the CWIS related to 
the consistent FO of C. membraniphorum (Ccm Plexus) at 
higher stratigraphic levels (i.e., intra-Upper Cenomanian) 
in many mid-latitude sites, such as Pueblo, CO. Also, other 
locations within the central CWIS (Harris & Tocher, 2003) 
and Texas (Eldrett et al., 2014, 2015a, 2017) may have 
evidence of a southerly incursion of a Boreal water mass 
during the Plenus Cold Event (PCE). The PCE records the 
temporary interruption of greenhouse conditions during 
Oceanic Anoxic Event 2 (OAE2) in the latest Cenomanian–
earliest Turonian (95–94 Ma), as peak transgression estab-
lished connections between the CWIS and northern bore-
al water mass (Eldrett et al., 2017). The Cyclonephelium 
compactum – C. membraniphorum (Ccm) morphological 
plexus (van Helmond et al., 2016) is listed as one of the 
dinoflagellate cyst taxa that migrated south during the 
PCE (Eldrett et al., 2017; Falzoni & Petrizzo 2022). Also 
relevant is the last occurrence of the dinoflagellate cyst 
species Kiokansium unituberculatum and Kiokansium wil-
liamsi, which are restricted to the earliest part of the late 
Cenomanian with an age of ca. 95.6 Ma assumed for both 
bioevents (Eldrett et al., 2017; Dodsworth & Eldrett 2019). 
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At the AAS, there are apparent top occurrences of K. wil-
liamsii (Figure 9) and Cyclonephelium compactum – mem-
braniphorum (Ccm Plexus) (Supplement 3, Plate 1), while 
K. unituberculatum (Supplement 3, Plate 3) is present 
along the entire section (Figure 9). The Ccm Plexus has a 
continuous presence through the AAS section with a ma-
jor abundance pick (>11%) at the base of FA-A, with sev-
eral smaller picks (≥ 6%), indicating the onset of a Boreal 
water incursion consistent with the PCE (Supplement 4, 
Figure 1). 

The integration of palynological evidence, including the 
identification of the N. albertensis Interval Zone (Lorente 
et al., 2023), the dinoflagellate cyst C. membraniphorum 
Interval Zone, and the identification of the Ccm morpho-
logical plexus in the section that records the possible 
onset of the PCE, all together suggest a younger age 
range than is presently reported for the AAS (Figure 9). 

This supports an age reconstruction for the AAS section 
as most probably (early) late Cenomanian, in the sense of 
Ogg and Hinnov (20 12). 

The revised age estimate for the AAS alters the chronos-
tratigraphic distribution of the Woodbine Group locally, 
without changing the identity, age, or position of estab-
lished stratigraphic units in the area. The AAS represents 
deposits of a unique, up-depositional-dip clastic point 
source that persisted until the (early) late Cenomanian and 
was active during deposition of the more distal, down-dip 
deposits of the Eagle Ford. Our data support previous 
conclusions based on sequence stratigraphic, lithostrati-
graphic, and biostratigraphic evidence that some por-
tions of the Woodbine Group may be as young as late 
Cenomanian-early Turonian, with deposition ending at 
92 mya (Christopher, 1982; Kennedy & Cobban, 1990; 
Jacobs et al., 2005; Ambrose et al., 2009; Cloos, 2018). 
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This extended period of deposition places sediments of 
the AAS quarry as up-dip, contemporaneous deposits 
of the (lower) Eagle Ford Group (Denne & Breyer, 2016; 
Denne et al., 2016; Gifford, 2021). Chronostratigraphically, 
the AAS deposits should correlate with one of the sandier, 
less organic-rich intervals of the Eagle Ford stratigraphic 
"event" that occurred during the (early) late Cenomanian 
at the onset of the PCE of OAE2.

The potential younger age for the AAS strata has biogeo-
graphic implications for the included fossil assemblage. 
A (early) late Cenomanian age suggests that the AAS 
could be considered penecontemporaneous to the up-
permost Mussentuchit Member of the Cedar Mountain 
Formation or even the lower Naturita Sandstone (former-
ly the "Dakota Sands") in Utah (Tucker et al., 2020, 2024), 
the lowermost Iron Springs Formation (late Cenomanian-
Turonian) (Eaton et al., 1997; Eaton, 1999), and the upper 
Tuscaloosa Group of the Gulf Coastal Plain (Cenomanian-
Turonian) (Adams & Carr, 2010). This may also impact 
other Woodbine Group strata, as the AAS shares multi-
ple taxa (Protohadros, Deltasuchus, Terminonaris, and 
Gehennachelys) with other localities spread across the 
DFW area, suggesting the existence of a single, coeval 
fauna (Noto et al., 2022, 2023b; Adrian et al., 2023). 
However, further chronostratigraphic data from these 
sites will be necessary to test this hypothesis.

 6. Conclusions

The comprehensive synthesis of lithologic, ichnologic, 
paleontologic, and palynologic data from the Arlington 
Archosaur Site provides a picture of a biotically diverse, 
distal coastal plain/delta plain undergoing gradual pro-
gradation while experiencing multiple short-term marine 
incursions. Systematic, fine-scale palynological sampling 
both supplements paleoenvironmental interpretations 
based on the lithologic or fossil record and identifies 
short-term environmental changes not otherwise reflect-
ed in those sources. This dataset provides a unique win-
dow into a dynamic depositional setting transitional be-
tween the continental-terrestrial and marine realms. 

The recognition of the Ccm morphological plexus in the 
AAS section extends deposition into at least the (early) 
late Cenomanian. This places the outcrop as deposition-
ally contemporaneous with portions of the Eagle Ford 
Group (Denne & Breyer, 2016). Furthermore, presence of 
the Ccm morphological plexus confirms the southward 
expansion of the Plenus Cold Event (PCE) along the CWIS 
Appalachia coast during the onset of OAE2. If coeval with 
the dawn of the PCE, the AAS presents valuable insight 
into the response of terrestrial communities to the on-
set of OAE2 along the southeastern coast of the CWIS 
in Appalachia. The dataset establishes the groundwork 
for comparison with other Woodbine Group surface and 
subsurface datasets, and those from across the CWIS in 
Laramidia. 
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