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An introduction for non-experts on using X-ray micro computed 
tomography as a tool for pore scale digital subsurface 
characterisation of siliciclastic materials

Abstract | This paper presents an overview of using X-ray micro computed tomography (μCT) as a valuable tool 
for micro scale investigation of siliciclastic materials. When processed using digital image analysis (DIA), valuable 
quantitative data can be extracted from μCT 3D images. Subsurface reservoirs are of great importance to society as 
fluid-bearing formations, but also as storage reservoirs for carbon dioxide. μCT imaging has the capability to perform 
preliminary, highly detailed investigations of potential reservoirs. This approach has a range of benefits when compared 
to traditional 2D techniques, such as optical and scanning electron microscopy (SEM). Key advantages include the 
technique being non-destructive and capable of 3D and 4D visualisation. This facilitates rapid repeated digital 
measurements and experiments on microstructures. Digital samples can also be readily shared within the scientific 
community to replicate results and quickly launch new investigations. However, limitations still exist, posing challenges 
to the wider application of such a methodology. Such limitations include the identification of a representative elementary 
volume (REV), computational cost, and suitable processing of the output image data. Here, we highlight the value of 
using μCT and DIA, from our first experiences, to facilitate pore scale siliciclastic reservoir characterisation, but also 
highlight our perceived limitations and barriers to its much wider application. This paper introduces the key processing 
stages, opportunities and limitations of these techniques.
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Lay summary | Subsurface characterization of potential reservoirs is a key aspect of the current energy transition phase. 
A digital approach based upon μCT imaging, digital image analysis (DIA) and digital rock physics (DRP) are techniques 
to make the initial assessment of reservoir deposits at the microscale to help inform subsequent decisions on further 
investigation. Application of the proposed digital methodology allows for investigation of the relationship between 
porosity and permeability, the upper percolation threshold, and a range of other pore body and throat characteristics. 
The aim of this contribution is to provide non-experts with a basic guide on the potentiality and limitations of these 
techniques.

 1. Overview

X-ray micro computed tomography (μCT) is an imaging 
technique that uses the differing X-ray attenuations of 
materials to visualise them. The technique involves firing 
X-rays at a sample through a range of cross sections to 
map the X-ray attenuation throughout a sample (Cnudde 
& Boone, 2013 and references therein). These attenuation 

maps are reconstructed as a stack of equally spaced 2D 
greyscale images, effectively representing a 3D sample 
volume, with individual 2D pixels becoming effective 3D 
voxels. The differences in X-ray attenuation of a phase 
are directly related to its density, which is used to distin-
guish between materials (Ketcham & Carlson 2001; Blunt 
et al., 2013). Darker pixels in the image represent phases 
of lower density, attenuating fewer X-rays, whilst brighter 
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pixels represent phases of greater density, attenuating 
more X-rays. To extract valuable data from these images, a 
series of steps must be performed through the technique 
of Digital Image Analysis (DIA). Over the past decade, 
lab-based micro computed tomography has gained pop-
ularity for tackling pore scale problems in a geological 
context (Blunt et al., 2013; Cnudde & Boone, 2013, Wei et 
al., 2014; Bultreys et al., 2015, 2016; Menke et al., 2016, 
2019; Singh et al., 2017; Thomson et al., 2018, 2020a, 
b; Hertel et al., 2018; Yu et al., 2019; Fei et al., 2019; 
Garfi et al., 2020; Payton et al., 2022b, a, 2021, 2022c). To 
begin with, images are often cropped to remove voxels 
not belonging to the study sample to reduce the effects 
of processing artefacts and limit computation times. 
Cropping can also be employed to remove extremities of 
the 3D volume, which are especially prone to beam hard-
ening artefacts. Beam hardening causes the outer pixels of 
an image to appear erroneously brighter than the centre. 
This is due to the average strengthening, or hardening, 
of the polychromatic X-ray beam as it passes through 
the sample (Ketcham & Carlson, 2001).  Images are then 
typically processed, using a variety of filters (Ketcham & 
Carlson 2001; Buades et al., 2008; Thomson et al., 2018; 
Garfi et al., 2020; Payton et al., 2021) in order to remove 
image artefacts and noise (Ketcham and Carlson 2001; 
Cnudde & Boone 2013), which improves the sharpness of 
phases and features (Figure 1). Images in a stack may also 
be normalised so that segmentation is reliable through-
out the sample. 

These pre-processing steps are an important stage in the 
workflow to enable reliable data extraction. From here, 
the process of allocating image voxels to discrete phases 
(i.e., segmentation) is performed, facilitating quantitative 
analysis (Ketcham & Carlson 2001; Iassonov et al., 2009; 
Campbell et al., 2018; Thomson et al., 2018). Given the 
direct impact that segmentation has on the output data, it 
is often considered the most important step in DIA.

Following segmentation, a range of processes and chal-
lenges can be investigated, including reactive transport 

(Menke et al., 2016; Payton et al., 2022a), microstructural 
analysis (Wei et al., 2014; Menke et al., 2016; Hertel et 
al., 2018; Thomson et al., 2018, 2020b; Fei et al., 2019; 
Payton et al., 2021, 2022c), single phase flow (Wei et al., 
2014; Bultreys et al., 2015; Thomson et al., 2018, 2020b; 
Menke et al., 2019; Payton et al., 2021, 2022a, c) and 
multiphase flow (Blunt et al., 2013; Bultreys et al., 2015; 
Singh et al., 2017; Menke et al., 2019; Garfi et al., 2020). 
Microstructures extracted from μCT images of natural 
samples can be used as the basis for a range of analyses 
and investigations into properties and features such as 
porosity, permeability, grain shape, pore geometry and 
tortuosity. Significantly, this approach allows for digital 
representations of microstructures to be used as physical 
domains for numerical modelling of processes such as re-
active transport and multiphase flow (Figure 2).

μCT imaging and subsequent image analysis are espe-
cially effective for quantitative porosity and permeability 
investigation. Traditional imaging approaches include op-
tical microscopy, scanning electron microscopy (SEM) and 
electron backscatter diffusion (EBSD), whilst the tradition-
al, go-to methods for quantitative analyses include helium 
pycnometry and mercury intrusion. Traditional imaging 
techniques can provide valuable measures of porosity 
but have limitations in that they are 2D in nature and are 
destructive to a certain degree. Meanwhile, pycnometry 
and mercury intrusion have the limitations of requiring 
laboratory facilities, provide no visual representation of 
the pore structure, and are time-consuming when running 
many and repeated experiments. With that said, they do 
sample larger representative volumes than μCT imaging. 
Further to this, the use of mercury is dangerous and of 
environmental concern.

Each of the limitations highlighted in non-digital or tra-
ditional approaches are overcome by μCT coupled with 
DIA. μCT imaging is non-destructive, which enables easy 
repeat experimentation whilst preserving the material for 
use with other study techniques (Payton et al., 2022d). 
Furthermore, μCT imaging enables 3D analysis is not 

Figure 1 | Example of a raw μCT image alongside the filtered equivalents. A non-local means filter is effective in removing most of the 
background noise and will suffice in many cases. The use of a median filter may be beneficial in other instances, particularly where grain 
boundaries are of significance.
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only quantitative but also qualitative, as study volumes 
are easily and effectively visualised. In order to conduct a 
preliminary pore scale characterisation, no further labora-
tory time or equipment is required after imaging. Instead, 
a typical laboratory workstation with a suitable amount 
of memory, usually around 2–3 times more than the data 
volume to be processed, can effectively perform basic 
analysis quicker and cheaper in the long term than re-
peated laboratory experiments.

μCT alongside DIA is a valuable technique for micro scale 
siliciclastic reservoir characterisation but comes with some 
limitations. There are a number of barriers stopping this 
method from addressing more challenges. These barriers 
include identifying a representative elementary volume 
(REV) (Al-Raoush and Papadopoulos 2010; Mostaghimi 
et al., 2013; Jackson et al., 2020; Huang et al., 2021) for 
upscaling of observations. A REV is the smallest possible 
volume that allows for suitable representation of larger 
volumes of the same material. However, due to the small 
scale of μCT study volumes, determining a suitable REV is 
challenging; a challenge that exists across all characterisa-
tion techniques at this scale. Furthermore, the processing 
of the output data (Iassonov et al., 2009; Shi & Yan 2015; 
Chauhan et al., 2016; Furat et al., 2019; Leonti et al., 2020) 
is often contentious due to the potential for user bias. The 
process of segmentation is directly reliant on filtering and 
user input in terms of either choice of automatic thresh-
olding algorithm (Iassonov et al., 2009; Bultreys et al., 
2016) or implementation of a manual threshold (Bultreys 

et al., 2016; Thomson et al., 2020a, b; Payton et al., 2021). 
This manifests from the image acquisition process itself 
that can introduce artefacts, such as beam hardening, 
but also the voxelised nature of digital images and the 
size that these voxels can be. Whilst there is an increasing 
availability of automated techniques to perform segmen-
tation based on unsupervised machine learning (Chauhan 
et al., 2016; Andrew 2018; Furat et al., 2019; Purswani 
et al., 2020; Alqahtani et al., 2022), in our experience of 
working with quartz-dominated samples, we found that a 
manual approach was effective due to clear phase separa-
tion. In such cases, user bias may be considered constant 
across samples and therefore, results are considered rela-
tive rather than absolute (Cnudde & Boone, 2013).

Whilst μCT imaging has opened up the opportunity to 
use real microstructures as physical modelling domains 
(Jiang & Tsuji 2014; Payton et al., 2022a), computational 
cost needs to be taken into account. A trade-off exists 
between the level of detail and accuracy in a model, and 
the amount of computational time and power required. 

As these issues are yet to be satisfactorily addressed in 
their entirety, the application of μCT to some scientific 
challenges is still limited. Such challenges include charac-
terising microporosity (Thomson et al., 2019), using true 
pore geometries for continuum scale modelling and up-
scaling micro scale observations.

Figure 2 | An example of a 3D pore structure extracted from μCT images. The triangular faces of tetrahedral volume elements are 
shown, which facilitate use as a modelling domain. The red-orange colours in the domain are an example from a numerical model of 
carbon precipitation from carbonated pore water, where red and white represent the greater and lesser presence of precipitated carbon, 
respectively.
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The goal of this article is not to provide a comprehen-
sive review of μCT imaging and DIA, but instead to share 
the experience of a non-expert with these techniques 
and how they can be used in sedimentology. We aim to 
highlight their value and limitations without entering into 
too much detail, which can be found instead from spec-
ified references, providing a first-aid-style reference for 
researchers approaching this technique – not for special-
ists in the topic. We hope that our experiences will help 
other new users with their approach to adopting these 
methodologies. 

 2. X-ray micro computed tomography images 

To allow for a digital representation of a geological sample 
to be as useful in terms of measurements and observa-
tions as a physical sample, all details at all scales need 
to be accounted for. The quality of the imaging output is 
limited by the size of the pixels or voxels that can be ac-
quired to make up the image itself. The voxelised nature 
of the acquired images means that features will never dis-
play perfect curved boundaries, e.g., owing to the cubic 
nature of the voxels (Fei et al., 2019; Payton et al., 2022a, 
b). The higher the level of detail acquired through small-
er voxels, the more information can be acquired about 
the physical sample, tending toward a completely ac-
curate digital representation (Zhan et al., 2010) (Figure 
3). However, greater image resolutions result in much 
larger datasets and can only be acquired for much small-
er sample volumes (Razavifar et al., 2021). Consequently, 
a trade-off must be found whereby an acceptable reso-
lution is acquired for the purpose of the study without 
generating an unmanageable amount of image data to 
be stored and processed.

μCT images acquired from siliciclastic sandstone samples 
typically have voxel sizes of between 1 and 5 μm3 (Payton 
et al., 2021, 2022c, b, a). For such sample types, it is rea-
sonable to use voxel sizes in this range given that sand 
grains are those classified as having a diameter of >63 
μm (Wentworth 1922). Consequently, the work presented 
on porosity and permeability must be considered to rep-
resent sample macro porosity rather than the true total 
porosity. As highlighted by Thomson et al. (2019, 2020b), 
in the Brae Formation sandstone, microporosity contrib-
uting to connectivity can be present beyond the resolving 
capability of μCT imaging.

 3. Digital image analysis and processing

A common approach to measure permeability is to use a 
numerical model simulating single-phase flow (Thomson 
et al., 2018, 2019, 2020b; Payton et al., 2021, 2022c). The 
computation time for these simulations can be substan-
tial, at minimum taking five days and at maximum three 
weeks on a workstation, running 6 hyperthreaded Intel 
Xeon W-2133 CPUs with clock speeds of 3.60 GHz sup-
ported by 120 GB of memory, performed by Payton et al. 
(2021, 2022c, b). A direct modelling approach, such as 

the application of the finite element method on a detailed 
domain mesh, provides the greatest degree of accuracy 
in a result. This is opposed to other indirect techniques, 
such as pore network modelling, where a less detailed 
domain is used but at the cost of computation time (Blunt 
et al., 2013; Bultreys et al., 2016). This means that running 
multiple test cases per sample at varying scales may not 
be feasible due to time constraints. Consequently, explo-
ration of indirect methods could be beneficial, such as 
using pore network models (PNMs) that have run times 
far smaller (Blunt et al., 2013; Varloteaux et al., 2013a, 
b). PNMs have been shown to offer a good degree of 
agreement in their permeability results when compared 
with direct numerical modelling approaches (Varloteaux 
et al., 2013b). Therefore, using a PNM-based approach 
could allow for further permeability investigation in a 
given time period, requiring a fraction of the time for a 
small decrease in accuracy.

The process of segmentation is of great importance owing 
to the direct impact that it has on the final output results 
acquired from μCT images. Segmentation is the process 
by which image voxels are assigned to a discrete phase. 
There are a number of approaches that may be taken to 
carry out this task, including thresholding, edge-based, 
region-based, watershed, clustering-based and machine 
learning segmentation. Here we focus on the simplest 
method, thresholding segmentation for initial phase iden-
tification (Kaur & Kaur 2014). This process is always prone 
to user bias or fails to work consistently across different 
materials in the cases of manual and automatic segmen-
tation, respectively (Bultreys et al., 2016; Campbell et al., 
2018). Automatic segmentation, performed by an algo-
rithm, is used to provide comparability between samples 
and reliability (Payton et al., 2021, 2022a), however, it is 
apparent that this possibly comes at the cost of accuracy. 
Meanwhile, manual segmentation, performed by a user, 
provides greater accuracy at the cost of reliability, which 
changes between samples and users (Thomson et al., 
2019, 2020b; Payton et al., 2021, 2022c, b). A wide range 
of automatic segmentation algorithms exist to tackle 
images with different types of features and levels of noise 
(Ridler & Calvard 1978; Otsu 1979; Huang & Wang 1995; 
Iassonov et al., 2009), However, it is unrealistic to find the 
best automatic algorithm for each study sample, as the 
definition of ’best’ is difficult. The accuracy of segmenta-
tion will always be questioned owing to the direct impact 
it has on any output measurements (Bultreys et al., 2016; 
Garfi et al., 2020). Steps can be taken to estimate and 
quantify segmentation error as described by Iassonov et 
al. (2019), however, often results within a study are con-
sidered to have constant bias and are therefore, relative 
rather than absolute (Cnudde & Boon, 2013).

With specific regard to the digital analysis of individual 
grains in sedimentary materials, the ability of watershed 
segmentation to both accurately and reliably distinguish 
between individual features is of great significance (Figure 
4). Watershed segmentation conceptually converts a 2D 
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greyscale image into a 3D topographic surface based on 
greyscale values. This allows for topographic lows to be 
‘filled’ with water and the point at which two lows spill into 
one another, the watershed, is where a feature bound-
ary is defined. Payton et al. (2022b) explored processes 
that can aid the accurate and reliable segmentation of 
individual grains, highlighting the benefit of a combi-
nation of Non-local Means (NLM) (Buades et al., 2008) 
and median filter (Gupta 2011). The NLM filter operates 
by searching the wider image for pixels that are not just 
similar to the target pixel, but also have similar windows 
of pixels around them. The target pixel is then averaged 
according to the other similar pixels and windows found. 
Meanwhile, the median filter replaces the greyscale 
value of each pixel with the median value of the pixels 
in a given local neighbourhood area of that pixel. Whilst 
different filtering algorithms are available (Mirmozaffari, 
2020), we found that the use of these image filters re-
sulted in a significant improvement in grain segmentation 
quality compared to prior work (Thomson et al., 2020a). 
However, when comparing the segmented grain volume 
with the raw μCT images, the generated grain boundar-
ies can still be considered inaccurate in some instances. 
For example, some grain boundaries (see Figures 4b and 
4d) appear to split up what could be seen as a single 
grain in Figure 4b. Whilst the combination of a NLM and 
median filter provides acceptable results, it is apparent 
that accuracy could be further improved. This stems from 
a combination of image voxel size, image filtering and 
available segmentation algorithms.

 4. Numerical modelling

To achieve an acceptable degree of accuracy without ex-
cessive computational cost, simplification is required. μCT 
images can be used to produce highly detailed physical 
numerical 3D modelling domains (Madonna et al., 2012; 
Bultreys et al., 2016; Mostaghimi et al., 2016; Shams et 
al., 2021; Payton et al., 2022a). Using such a detailed 
modelling domain results in a large number of mesh 

elements on which to perform numerical computations at 
a high cost. Consequently, investigations may be simpli-
fied in terms of the chemical system by considering fewer 
reaction pathways (Payton et al., 2022a) or fewer physical 
flow processes. In doing so, a model becomes less accu-
rate, highlighting the barrier that computational resources 
pose to extracting the most value from this approach.

The process of mesh generation from μCT images to 
produce a modelling domain often involves a degree of 
modification to the triangulated grid representing the mi-
crostructure, especially in 3D (Schöberl 1997, as shown 
in Figure 2). This can result in the intersection of mesh 
elements, which causes issues with the convergence of 
a numerical model. These usually arise from sharp and 
irregular clusters of elements on the mesh surface, which 
are not effectively dealt with during mesh building (Lo 
2002). Measures that can be taken to address issues with 
the mesh include manual intervention, mesh decimation 
or simplification and adaptive mesh refinement. Payton 
et al. (2022a) highlighted that a degree of simplification 
through smoothing of the surface mesh was effective in 
allowing their model to successfully converge on a solu-
tion. The smoothing process fundamentally changes the 
volume that has been segmented to a small degree, in-
troducing a source of uncertainty regarding the accuracy 
of the pore structure. As with image filtering, which also 
changes the data, some is necessary to improve the qual-
ity of the output, but too much can result in degradation 
of the output quality.

 5. Representative elementary volumes

Determination of a representative elementary volume 
(REV) is a limitation with regards to upscaling, which man-
ifests in many pieces of micro scale work. Identification 
of a REV allows for observations and measurements to 
be made, which are then applicable throughout a given 
area, volume or geological formation (Al-Raoush & 
Papadopoulos 2010; Mostaghimi et al., 2013; Jackson 

Figure 3 | A schematic representation of how voxel size directly influences the accuracy of feature edge digitisation in μCT images.
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et al., 2020; Huang et al., 2021). Owing to the hetero-
geneous nature of the subsurface environment, a REV is 
usually quite large, in order to factor in these different 
heterogeneities, and cannot always be found within a typ-
ical μCT volume (Al-Raoush & Papadopoulos 2010). Due 
to the scale on which μCT imaging takes place, finding a 
REV of a substantial area is challenging.

 6. Summary and future outlook

X-ray micro computed tomography (μCT) imaging paired 
with digital image analysis (DIA) is an effective tool in ad-
dressing a range of pore scale challenges in Earth Science. 
Despite the proven success in applications, including mi-
crostructural analysis, flow modelling and geophysical 
property investigation, there remain limitations.

At the core of using this technique to address far-reach-
ing geoscience problems is the issue of upscaling from 
a representative elementary volume (REV). This limits the 
wider applicability of results acquired using this tech-
nique at present. Further work is necessary to allow for 
micro scale studies to produce value far beyond pore 
scale understanding, up to the continuum scale. This is an 
active area of current research, with a range of methods 
to achieve upscaling currently proposed and developed. 
Such approaches include use of fractal-scaling (Munawar 
et al., 2021), implementation of the Brinkman equation 

(Wei et al., 2021), a combined Darcy-Brinkman-Stokes ap-
proach (Menke et al., 2021), pore network model stitching 
(Kohanpur & Valocchi 2020), correlation with whole core 
imaging (Hertel et al., 2018), and percolation theory (Liu 
and Regenauer-Lieb 2011). The focus of these studies 
on tackling relatively small upscaling from the pore scale 
highlights the size of this challenge. If scaling relationships 
based on any of these approaches can be derived, which 
are widely applicable and allow the continuum scale to 
be accessed, this would add huge value to μCT imaging. 

Another barrier to expanding the use of this technique 
is the amount of data acquired and the associated com-
putational limitations. If larger volumes of material are to 
be imaged in such high levels of detail, then there must 
be resources available to store and process this data. 
With the current rapid growth in cloud computing use in 
research, it stands to reason that the widening accessi-
bility to high performance computing facilities and large 
volumes of cloud storage could allow for this issue to be 
addressed. Increasing availability of computational re-
sources means that image pre-processing and analysis 
can be carried out more rapidly, expediting the process 
of answering research questions. This encompasses 
the ability to grow the complexity of numerical models 
based upon μCT microstructures. At present, the physical 
grid itself requires substantial computing power to deal 
with, even before the complexity of the model itself is 

Figure 4 | The sequence of processes required to perform effective segmentation of individual grains within a single phase. (A) and (B) 
show the effect of the non-local means and median filters, respectively. The watershed algorithm is employed on the granular phase in 
(C) and those grains that are not intersecting the volume boundaries are highlighted in (D). (E) Shows the 3D output following individual 
grain segmentation.
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considered. Widening use of cloud computing facilities 
and larger supercomputing facilities may overcome this 
barrier, allowing for more detailed and larger grids to be 
combined with less simplified mathematical approaches 
to simulating reactive transport or multiphase flow.

Finally, the importance of accurate and repeatable image 
segmentation is very clear. At present, manual segmenta-
tion approaches appear to dominate in the geosciences, 
owing to the user’s ability to tackle difficult areas result-
ing from natural heterogeneity. Automatic segmentation 
algorithms are often not effective and may only be appli-
cable to a certain type of material. To address this topic, 
a range of machine learning (ML) approaches are emerg-
ing and continue to be improved (Andrew 2018; Purswani 
et al., 2020). The ability to produce effective ML models 
rapidly and easily would allow for a combination of the 
benefits of automatic and manual segmentation. This 
would mean models that are accurate, directly compara-
ble and repeatable between samples could be applied 
for segmentation.
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