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Abstract 30 
The Pantanal Basin is a low-gradient back-bulge analog for distal depozones associated 31 
with retroarc foreland basin systems in the geological record. Extensive lowland 32 
environments including fluvial megafans, floodplains, wetlands, and lakes make up the 33 
Pantanal Basin today, with detrital sediment sources located along basin-margin plateaus 34 
and remnants of ancient orogenic belts. Here, we examine the chemical composition and 35 
mineralogy of modern fine-fraction fluvial sediments using X-ray methods to assess the 36 
influence of chemical weathering on sediment composition in this tropical basin. The 37 
abundance of clay minerals follows the rank order pattern of kaolinite > vermiculite > illite 38 
> smectite. Kaolinite is more abundant in river muds from the north-central than the 39 
southern Pantanal, suggesting strong extant chemical weathering plus the potential for 40 
clays inherited from siliciclastic parent lithologies that formed under Mesozoic greenhouse 41 
conditions. Illite occurs in sediments draining the North Paraguay Belt and limited parts 42 
of the South Paraguay Belt, and it reflects the influence of mechanical weathering of the 43 
metamorphic facies. In the southeastern Pantanal, vermiculite is a dominant constituent 44 
of the Miranda River watershed, which drains dacitic parent rocks and rhodic ferralsols. 45 
The geochemistry of the sediments reveals the interplay of quartz addition and clays 46 
inherited from the parent rocks. The most quartzose sediments are encountered at the 47 
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confluence of the Paraguay River and the Taquari River megafan, where the cumulative 48 
effect of the 2 – 3-month flood pulse maximizes chemical weathering. Clay plus silt in 49 
back-bulge basins are controlled by climate > soils > parent rocks. 50 
 51 
Lay summary 52 
The compositional controls on clays and silts in tropical rivers of the Pantanal Basin 53 
distant from the Andes remain unclear. We collected 74 modern riverbank samples and 54 
used X-ray techniques to determine clay mineralogy and chemical elemental composition. 55 
The most common clay minerals in rank order of abundance were kaolinite > vermiculite 56 
> illite > smectite. Kaolinite was dominant in the north-central Pantanal, whereas 57 
vermiculite was dominant in the southeastern Pantanal. The most quartzose clays and 58 
silts were found in the middle Paraguay River Pantanal clays are controlled first by 59 
climate, and secondarily by soils. 60 
 61 
Resumo 62 
A Bacia do Pantanal é um sistema sedimentar de baixo relevo na região de back-bulge 63 
análoga no registro geológico a outros ambientes deposicionais associados com 64 
sistemas de retroarco. A hidrografia da Bacia do Pantanal inclui mega leques fluviais, 65 
planície de inundação, áreas alagadiças e lagos, com fontes de detritos provenientes das 66 
margens do planalto e resquícios de cinturões orogênicos pré-Cambrianos. Neste 67 
estudo, analisou-se a composição química e a mineralogia da fração fina de sedimentos 68 
fluviais modernos com métodos de raios-X para avaliar a influência do intemperismo 69 
químico na composição dos sedimentos nesta bacia tropical. A abundância de minerais 70 
de argila segue o padrão de ordem de caulinita > vermiculita > ilita > esmectita. A caulinita 71 
é mais abundante nos sedimentos fluviais do centro-norte do que no sul do Pantanal, o 72 
que sugere forte intemperismo químico recente além do potencial de argilas herdadas 73 
de fontes sedimentares siliclásticas formadas em condições de “greenhouse” durante a 74 
Era Mesozoica. A ilita ocorre em sedimentos que drenam a Faixa Norte do Paraguai e 75 
partes limitadas na Faixa Sul do Paraguai, refletindo a influência do intemperismo 76 
mecânico das fácies metassedimentares. No sudeste do Pantanal, a vermiculita é um 77 
constituinte dominante da bacia do Rio Miranda, que drena rochas-fonte dacíticas e 78 
latossolos vermelhos. A geoquímica dos sedimentos revela a interação entre a adiação 79 
de quartzo e as argilas herdadas das rochas-fonte. Os sedimentos quartzosos são mais 80 
frequentes na confluência do Rio Paraguai com o mega leque do Taquari onde o efeito 81 
cumulativo do pulso de inundação (2 a 3 meses) maximiza o intemperismo químico. Este 82 
estudo revela que a argila e o silte que preenchem bacias de back-bulge são controlados 83 
pelo clima > solos > rochas-fonte. 84 
 85 
Keywords: Clay mineralogy, Geochemistry, Chemical weathering, Tropical wetlands 86 
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1. Introduction 89 
Modern sands, silts and clays in large watersheds have been studied to reveal the 90 
interactions among parent lithology, climate, and tectonics that influence sediment 91 
composition (Johnsson, 1993; Jonell et al., 2017; He et al., 2020; Garzanti et al., 2021). 92 
For instance, quartz enrichment and kaolinite abundance in lowland settings or intense 93 
mechanical weathering on hillslopes are often linked to hot, humid conditions 94 
characteristic of the tropics (Oliva et al., 1999; Viers et al., 2000; Aristizábal et al., 2005; 95 
Garzanti et al., 2019). Tardy et al. (1973) show that montmorillinite can also be 96 
concentrated in the lowlands downstream of granites in humid tropical environments. 97 
These diverse floodplain clay mineral compositions suggest that considerable variability 98 
surrounds clay mineral development in tropical floodplains. Although studies on clay 99 
minerals have been conducted worldwide (e.g., Chamley, 1989), the relationships among 100 
fluvial transport, climate, tectonics, and chemical weathering on clay mineralogy are site-101 
specific and require localized sediment sampling. Modern fluvial sediment compositions 102 
have not been systematically assessed in many South America rivers, with limited 103 
research focused on the composition of the suspended sediment load in a few major 104 
rivers (Potter, 1994; Guyot et al., 2007; McGlue et al., 2016; Repasch et al., 2020).  105 
 106 
Climate gradients are essential controls on the weathering of clay minerals and impact 107 
regional vegetation and agricultural production. When hydrolysis is inefficient or 108 
incomplete, feldspar minerals persist along with Ca2+ and Na+, as was observed along 109 
the Zambezi River system (Garzanti et al., 2022). No clay minerals may be observed in 110 
exceptionally arid conditions (e.g., Warr et al., 2022). Where the climate is warm and 111 
humid, the 1:1 type clays are predominant with greater kaolinite compared to illite/mica in 112 
the clay (<2 µm) fraction (Ito & Wagai, 2017). These large-scale trends have been 113 
documented and used for understanding the chemical weathering processes globally. 114 
Changes to the clay mineral assemblage and fine fraction geochemistry along the Pearl 115 
River and the Red River were dominantly controlled by climate gradients (He et al., 2020, 116 
2022). However, none of these have examined modern fluvial clays within a primarily 117 
floodplain or wetland environment. Garzanti et al. (2011) provided the most 118 
comprehensive study of floodplain clays on the Indian sub-continent, within the Ganges-119 
Brahmaputra foreland basin system. 120 
 121 
Parent lithology is a secondary determinant of modern clay minerals. Guyot et al. (2007) 122 
examined clay minerals across the Amazon Basin and found that the provenance of the 123 
areas (shield, Andean cordillera, Piedmont basins) determined the clay mineral 124 
constituents. For example, the illite and chlorite reflected erosion of the metapelites and 125 
metabasites exposed in the Red River basin (He et al., 2022). Kaolinite can originate from 126 
virtually any parent rock, given warm and humid environments typical of the tropics (Dill, 127 
2016). Tropical and sub-tropical climates commonly result in an under-representation of 128 
mafic lithologies relative to their areal extent in modern fluvial sediments (Garzanti et al., 129 
2014; Hatzenbühler et al., 2022).  130 
 131 
Mud composition can reflect differences between transport-limited erosion and 132 
weathering-limited erosion depending on the land surface gradient and hydrology 133 
(Stallard et al., 1991). Sediment erosion can be considered transport-limited, where 134 
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weathering creates more clays than can be transported, resulting in profoundly weathered 135 
soil profiles (Stallard et al., 1991). Plateaus and floodplains are emblematic of transport-136 
limited erosional regimes where the sediments and soils remain in place, subjected to 137 
prolonged chemical weathering. Weathering-limited erosion occurs when the bedrock is 138 
partially weathered before the sediment is removed, concentrating micas and feldspars 139 
(Stallard et al., 1991). Cordilleras erode physically through rockfalls and the breakdown 140 
of the rock formation, exacerbated by high slopes. Further understanding of these and 141 
other source-to-sink processes requires a close examination of weathering intensity, as 142 
recorded in clay mineral composition and elemental geochemistry (He et al., 2020; Cruz 143 
et al., 2022).  144 
 145 
Back-bulge basins are an ideal locale to examine how changes in environmental 146 
conditions affect clay mineral production in tropical riverine settings. Back-bulges are 147 
usually low-gradient zones that store sediment and preserve important environmental 148 
signals over geologic time (Horton & DeCelles, 1997; Assine et al., 2016; Brewer et al., 149 
2020; Caracciolo, 2020). Silt plus clay preservation is excellent in low-gradient back-bulge 150 
depositional environments (e.g., in floodplains, lakes, and wetlands) (Quartero et al., 151 
2015; McGlue et al., 2016; Tineo et al., 2022). Therefore, one of the motivations of this 152 
research is to examine the processes that control mud mineralogy and chemistry in a 153 
modern tropical setting where the environmental gradients (i.e., climate, soils, vegetation, 154 
relief) are relatively well-understood in order to provide insights that may improve 155 
interpretations of the geological record. We selected the Pantanal Basin as an exceptional 156 
locale to examine the primary sedimentary processes. The Pantanal Basin 157 
(Brazil/Bolivia/Paraguay) forms the back-bulge depozone of the Cenozoic Andean 158 
foreland basin (Chase et al., 2009; Cohen et al., 2015; Horton, 2022). The Pantanal is a 159 
tropical savanna extending from the Amazon drainage divide to the Brazilian border with 160 
Paraguay (Figure 1A) (Beck et al., 2018). Most hinterland (i.e., basin margin) lithologies 161 
surrounding the Pantanal are siliciclastic sedimentary rocks, with some pre-Cambrian 162 
igneous and metamorphic exposures; these lithologies were recently grouped into six 163 
provenance regions (Figure 1B, C; Lo et al., 2023). 164 
 165 
In this study, modern mud in the rivers of the Pantanal were collected to evaluate their 166 
mineralogy and chemical composition. We employed X-ray diffraction (XRD) for semi-167 
quantitative clay mineralogy and wavelength-dispersive X-ray fluorescence (WD-XRF) to 168 
deduce major elemental geochemistry (Moore & Reynolds, 1989). These data were 169 
analyzed along with environmental characteristics of the basin’s sub-watersheds (e.g., 170 
slope, lithology, precipitation, elevation) to elucidate the processes that control clay 171 
composition. We tested the hypothesis that differences in mean annual precipitation 172 
control the clay mineral assemblage in modern fluvial silt plus clay in the Pantanal. This 173 
article is a companion study to a petrographic analysis of contemporary river sands in the 174 
Pantanal (Lo et al., 2023), with the end goal of identifying major patterns in sediment 175 
generation and transport in this basin. Plata River samples were integrated with this study 176 
to evaluate the influence of Pantanal Basin clay composition on downstream sediments. 177 
Ultimately, our objective is to improve interpretations of ancient sedimentary rocks in 178 
similar settings through a detailed set of modern observations and a database of 179 
mineralogical and chemical measurements.  180 
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 181 
Figure 1: (A) Upper Paraguay River Basin (white outline) in South America. Red box denotes area shown 182 

in panel C. (B) Pantanal Basin provenance regions with major rivers (dark blue lines). Much of the 183 
areas covered at the surface by wetlands are designated as lowlands, in contrast with the fringing 184 
cratons and the plateau. White circles represent all sampling sites listed in Table S1. (C) GTOPO30 185 
digital elevation model of South America (USGS, 1996), including a topographic cross-section A – 186 
A’ from Google Earth©. Modified from Lo et al. (2023). 187 

 188 
2. Geological setting of the Pantanal Basin 189 
The Cenozoic Pantanal Basin formed from flexure of the crust as the Andes range arose 190 
from the subduction of the Pacific plate beneath the South American plate (Horton & 191 
DeCelles, 1997; Assine et al., 2016). The Pantanal Basin has accumulated ~500 m of 192 
sediment, with the depocenter located near the geographic center of the basin in the area 193 
of the Taquari River (Ussami et al., 1999). The Pantanal Basin is occupied by large 194 
distributary fluvial systems also known as fluvial megafans (Assine, 2005; Zani et al., 195 
2012; Hartley et al., 2013; Weissmann et al., 2015). Unconsolidated sediments fill the 196 
lowlands, which span ~150,000 km2 within the Upper Paraguay River watershed covering 197 
~465,000 km2 of Brazil, Bolivia and Paraguay. The Pantanal Basin can be divided into six 198 
hinterland provenance regions: lowlands, Amazon craton, Rio Apa craton, plateau, and 199 
the South and North Paraguay Belt (Lo et al., 2023) (Figure 1B). Bedrock in the 200 
northwestern Pantanal consists of Amazon craton, with granites, granodiorites, schists, 201 
and dikes of quartz-diorite and quartz-gabbro making up the bedrock (Figure 2A) 202 
(Rizzotto & Hartmann, 2012; Horbe et al., 2013; Braga et al., 2019). The Rio Apa craton 203 
in the southwestern Pantanal consists of gneisses, granites, granodiorites, amphibolites, 204 
schists, and quartzites (RadamBrasil, 1982; Alvarenga et al., 2011). The plateau region 205 
hosts Phanerozoic sedimentary rocks derived from the Paraná Basin: the Aquidauana 206 
Formation (arenites, diamictites, siltites, shales), Botucatu Formation (aeolian-207 
sandstones), Serra Geral Formation (basalts), Caiuá Group (arenites), and Paraná Group 208 
(shales, siltites, arenites, arkose) (Lacerda Filho et al., 2004; 2006). The South Paraguay 209 
Belt hosts phyllites, schists, metarenites, quartzites, and dolomitic and calcitic marble in 210 
the Serra da Bodoquena. The North Paraguay Belt includes the Província Serrana, with 211 
phyllites, schists, limestones, siltites, and arenites (RadamBrasil, 1982). The point of 212 
highest elevation is 1260 m above sea level (m.a.s.l.) on the eastern plateau, and the 213 
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lowest point is 70 m.a.s.l. at the basin outlet near the confluence of the Apa and Paraguay 214 
Rivers (Figure 1C). 215 
 216 

 217 
Figure 2: (A) Geology of the Pantanal Basin and drainage network, with major faults. The plateau 218 

provenance region is dominated by siliciclastic sedimentary rocks, whereas metamorphic rocks are 219 
restricted to the cratons and Paraguay Belt. (B) Soil map for the Pantanal Basin (FAO, 1971). The 220 
most widespread soil classes are eutric planosol/fluvisol in the lowlands (Benedetti et al., 2011). 221 
Geologic information was obtained for Bolivia (Dirección de Ordenamiento Territorial, Gobierno 222 
Autónomo Departamental de Santa Cruz), Paraguay (Vice Ministerio de Minas y Energía), and 223 
Brazil (Serviço Geológico do Brasil, CPRM). Faults are based on published studies (Rizzotto & 224 
Hartmann, 2012; Warren et al., 2015; Faleiros et al., 2016; Barboza et al., 2018; Rivadeneyra-Vera 225 
et al., 2019; Cedraz et al., 2020). White circles represent all sampling sites listed in Table S1. 226 
Modified from Lo et al. (2023). 227 

 228 

 229 
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Figure 3: (A) Mean annual precipitation (mm/y) from the WorldClim database (Fick & Hijmans, 2017). In 230 
the Brazilian Pantanal, the precipitation is 970 – 1850 mm/y. (B) Vegetation ecoregions regions of 231 
the Pantanal Basin (Olson et al., 2001). The primary vegetation of the Pantanal consists of flooded 232 
savanna and cerrado (tropical savanna). White circles represent all sampling sites listed in Table 233 
S1. Modified from Lo et al. (Lo et al., 2023). 234 

 235 
The hydrologic configuration of the Pantanal is responsible for the diversity of lowland 236 
environments and the contrast between wet-dry seasons (Figure 3A). The Paraguay 237 
River flows along the basin’s western margin and is the trunk river of the Pantanal. The 238 
Paraguay River is joined by the Jauru River west of the Província Serrana in the North 239 
Paraguay Belt provenance region. The Cuiabá River discharges into the Paraguay River 240 
at 17.9°S latitude, followed by the Taquari River’s numerous distributary channels 241 
discharging just north of 19°S latitude. The Miranda River joins the Paraguay River at 242 
~19.4°S latitude. The Paraguay River flows along the Rio Apa craton between 21°S and 243 
22°S latitude before flowing out of the basin. The waters that flow to the trunk river 244 
annually depend on the migration of the Intertropical Convergence Zone, which 245 
concentrates rainfall in the months of December, January, and February and strongly 246 
influences patterns of flooding and vegetation (Ivory et al., 2019). The peak dry season 247 
occurs in June, July, and August, but the dry season varies from 1 – 2 months north of 248 
the Taquari River to 4 – 5 months south of the Taquari River (IBGE, 2002). This 249 
seasonality of rainfall coupled with the minimal gradient of the lowlands results in a flood 250 
pulse effect, because rainfall in the plateau and northern Pantanal takes 2 – 3 months to 251 
flow to the basin outlet (Junk et al., 2006). When the waters rise with the flood pulse, the 252 
suspended clay particles are delivered to the riverbanks and floodplains (e.g., Hamilton, 253 
2002). This results in broad areas of inundation in the lowlands that lasts for several 254 
months annually. Mean annual rainfall is ~1800 mm in the northern and eastern Pantanal 255 
but diminishes to ~1200 mm along the western and southern Pantanal (Figure 3A). The 256 
average annual temperature is ~25°C basinwide (Fick & Hijmans, 2017).  257 
Clay minerals can be transformed in contemporary soils depending on climate, slope 258 
gradients, and vegetation (Hillier, 1995; Velde & Meunier, 2008) (Figures 2B and 3B). The 259 
soils of the Pantanal are dominated by eutric planosols and fluvisols in the lowlands, but 260 
the plateau provenance region is more variable (Figure 2B). The plateau region contains 261 
mostly ferralsols and arenosols in addition to luvisols in the south (Benedetti et al., 2011). 262 
Lithosols are present in the Província Serrana region, and the western Pantanal contains 263 
mollic planosols, rhodic ferralsols, and orthic solonetz. Figure 3B illustrates the general 264 
patterns of vegetation, but additional floral diversity relates to the spatial distribution of 265 
soil types (de Souza et al., 2021). Broadly, the soils are divided into forest formations, 266 
arboreal cerrado, herbaceous cerrado, chaco (woody steppic savanna), monodominant 267 
formations, and mixed vegetation (dos Santos Vila da Silva et al., 2021). For example, 268 
semideciduous (capão) and deciduous forests thrive in vertisols, whereas the savanna 269 
woodlands (cerradão) grow best in arenosols (de Souza et al., 2021).  270 
 271 
3. Methods 272 
3.1. Initial design and fieldwork 273 
Paired sand and silt plus clay samples were collected from river margin bars in the 274 
Pantanal in 2019 – 2021. Sampling sites were chosen to maximize spatial coverage and 275 
lithological diversity and for ease of access. At several sampling sites (n = 22), 276 
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accompanying hydrologic flow data was recorded at the closest available stream gauge 277 
(Table S2). Samples were collected in both the wet and dry seasons (Table S1). Each 278 
site was treated as a pour point, which is the endpoint of a streamflow network (Gleyzer 279 
et al., 2004). Pour point analysis was completed with QGIS 3.4.6 to define each sample’s 280 
contributing watershed using Shuttle Radar Topography Mission (SRTM) digital elevation 281 
models (DEMs) from USGS EarthExplorer (https://earthexplorer.usgs.gov). Pour point 282 
analysis for watersheds > 250,000 km2 was completed with 3-arc second resolution DEM 283 
(Verdin, 2017). The average watershed slope was calculated from these DEMs, whereas 284 
elevation and distance from the Paraguay trunk river were extracted from Google© Earth.  285 
The precipitation and temperature for each sampling site were measured from WorldClim 286 
(Fick & Hijmans, 2017) (Table S1). Soils were identified in each watershed from global 287 
FAO (1971) data and converted to the United States Department of Agriculture 288 
classification for the purposes of literature review (Deckers et al., 2003; Souza et al., 289 
2018), and vegetation ecoregions were also identified from global data (Olson et al., 290 
2001). We did not collect local soil profiles and document local vegetation at each 291 
sampling site, because we considered each sample to be the product of cumulative 292 
upstream processes rather than localized processes and features. Geologic data were 293 
extracted from national geologic maps (Lacerda Filho et al., 2004, 2006; SERGEOMIN, 294 
2005; Spinzi & Ramírez, 2014) (Table S3). Seventy-four (74) distinct silt plus clay 295 
sampling sites were studied, and of these, 71 samples have mineralogy data, 66 have 296 
geochemical data, and 63 have both mineralogy and geochemistry data. 297 
 298 
3.2. Pretreatment and XRD analyses 299 
The silt plus clay fraction was separated by wet sieving using a 53 µm sieve. We treated 300 
each sample with 1N sodium acetate (NaOAc) with pH 5 adjusted using glacial acetic 301 
acid (HOAc) to dissolve carbonates and replace the exchange sites for Ca and Mg with 302 
Na. We used 30% hydrogen peroxide (H2O2) to dissolve organic matter, followed by 303 
washing once with 200 mL NaOAc and 200 mL with 1M sodium chloride (NaCl) (Jackson, 304 
1969). To obtain the <2 µm fraction, we centrifuged the samples first at 750 rpm for 3 305 
minutes and decanted the supernatant (liquid >2.5 cm from bottom of a 250 mL bottle) 306 
containing the <2 µm clays into a separate container for settling. The bottle was refilled 307 
with sodium carbonate (Na2CO3) and the process repeated until a relatively clear 308 
supernatant was achieved. The remaining material was separated as the silt fraction (2 – 309 
54 µm). Several days to weeks was allowed for the clays to settle, and 50 mL of the clays 310 
were transferred to a centrifuge tube for freeze drying (Figure 4). 311 
 312 
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 313 
Figure 4: Flowchart created with BioRender.com that summarizes all pretreatment steps, modified from 314 

Jackson (1969). The process begins with a wet sample, dissolution of organic matter and 315 
carbonate, separation of <2 µm clays from silt (2 – 53 µm), and freeze drying of the <2 µm clays. 316 

 317 
Oriented slides of clay fractions were prepared using the filter peel method (Drever, 318 
1973), with diagnostic treatments of magnesium (Mg), Mg-glycerol, and a potassium (K)-319 
saturated slide. The use of Mg-saturation and subsequent ethylene glycol is chiefly to 320 
identify smectite (Aparicio et al., 2010). The application of K-saturation is to identify 321 
vermiculite, and further heating to 550°C confirms the presence of kaolinite. Briefly, we 322 
measured 200 mg of freeze-dried clay (<2 µm) for each slide and transferred the sample 323 
to 50 mL centrifuge tubes. We added 25 mL 0.5 M magnesium chloride (MgCl2), mixed 324 
well, and sonicated. In a separate centrifuge tube, we added 25 mL 0.5 M potassium 325 
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chloride (KCl) to 200 mg of freeze-dried clay, mixed well, and sonicated. The tubes were 326 
centrifuged at 2000 rpm for 5 minutes, the supernatant was discarded, and the process 327 
was repeated twice more. We added deionized water, mixed, sonicated the sample, and 328 
poured the mixture onto a Millipore 0.45 µm membrane filter mounted to a vacuum flask. 329 
With the clay still moist, we removed the filter and placed the filter clay side down on a 330 
glass slide. We lightly rolled a 20 mL glass vial across the back of the filter as we peeled 331 
away the filter, leaving behind a uniformly thick oriented clay mount. 332 
 333 
The mineralogy of the oriented clays was determined using XRD. A PANalytical X’Pert 334 
diffractometer with a Cu tube at 45 kV and 40 mA from 2° – 40° with a step size of 0.03° 335 
2-theta (2θ) step size and scan step time of 10 seconds was employed for the analysis. 336 
Total scan time was ~3.5 hours for each treatment: Mg-saturated, K-saturated, Mg-glycol 337 
solvated, and K-saturated and heated (550°C). When the first two treatments were 338 
scanned, we solvated the Mg-saturated slide with glycol to identify if smectite was 339 
present, and the K-saturated slide was heated to 550°C for one hour to collapse the 340 
kaolinite structure. The major constituent clays identified in X-ray diffractograms used 341 
established 2θ peak positions (e.g., Moore & Reynolds, 1989). All data were analyzed 342 
using X’Pert HighScore software. Semi-quantitative calculation of clay mineral 343 
compositions was accomplished by multiplying the height (counts) by the full width at half 344 
maximum (FWHM, ° 2θ) in the Mg-saturated plot divided by the sum of the calculated 345 
areas for the predicted clay minerals and multiplied by 100 (Biscaye, 1965; Moore & 346 
Reynolds, 1989) (Table S4). These clay abundances were cross checked in NEWMOD 347 
II, in order to confirm the reliability of this semi-quantitative method (Yuan & Bish, 2010). 348 
Spatial interpolation of the three primary clay minerals (kaolinite, illite, vermiculite) was 349 
performed using the “Spline with barriers” tool in ArcGIS Pro 3.1.2. Smectite, goethite, 350 
and gibbsite were reported based on presence or absence at each sampling station. The 351 
iron content in illite was calculated using the intensity of the illite (001) and (002) peaks: I 352 
(001)/I (002) (Brown & Brindley, 1980; Deconinck et al., 1988; Furquim et al., 2010; 353 
Nascimento et al., 2015).  354 
 355 
3.3. WD-XRF geochemistry  356 
WD-XRF measurements completed with a Bruker AXS Inc. S4 Pioneer device were used 357 
to determine chemical elemental abundances for select bulk sediment samples (Table 358 
S5) and for the <53 µm fraction of samples with sufficient material (Table S6, n = 66). 359 
Eight duplicate samples were measured to assess the repeatability of the analysis. 360 
Following the loss-on-ignition protocol, each sample was heated to 550°C for four hours 361 
to remove organic matter and 950°C for two hours to remove carbonate (Heiri et al., 362 
2001). Samples were disaggregated and homogenized in a mortar and pestle, mixed with 363 
borate flux GF-9010 (90% lithium tetraborate and 10% lithium fluoride) in an 8:1 ratio and 364 
two drops of lithium tetraborate (Li2B4O7), and melted into glass discs using a Katanax X-365 
300 or K1 automatic fusion fluxer machine. The samples were calibrated with a set of 366 
eight certified reference samples using linear regression. Molar proportions were utilized 367 
to calculate the chemical weathering indices, including the chemical index of alteration 368 
(CIA; Equation 1) and the Weathering Index of Parker (WIP; Equation 2) (Parker, 1970; 369 
Nesbitt & Young, 1982).  370 
 371 
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 375 
Both indices are used to determine the extent of weathering (Table S6). Equation 1 (CIA) 376 
indicates the extent of feldspar-to-clay conversion, whereas Equation 2 (WIP) measures 377 
proportions of alkali and alkaline earth metals, which is suitable for weathering of 378 
heterogeneous metasedimentary lithologies (Price & Velbel, 2003). The WIP acts as an 379 
index of quartz recycling, whereas the CIA is unaffected by quartz dilution. Calculating 380 
the ratio of CIA to WIP allows us to differentiate between weathering and quartz recycling 381 
(Garzanti et al., 2019). The weathering indices were spatially interpolated using the 382 
“Spline with barriers” tool and classified using geometric intervals in ArcGIS Pro 3.1.2. 383 
We evaluated the influence of source rock composition on fine-fraction sediment 384 
chemistry using ACN, ACNK, ACNKFM plots and molar proportions of the major elements 385 
(Nesbitt & Young, 1984; Nesbitt & Wilson, 1992; Fedo et al., 1995). 386 
 387 
We examined environmental controls on clay mineralogy and chemistry using canonical 388 
correspondence analysis (CCA). The key advantage for using CCA was to distinguish 389 
how the environmental variables and major elements affected both the clay abundance 390 
and the sampling sites. We also explored other ordination analyses to examine their 391 
effectiveness in explaining the distribution of clay minerals in the Pantanal Basin. Finally, 392 
we measured pH for a representative set of sediment samples from each region, treating 393 
each sample as a 1:2 soil/0.01 M CaCl2.  394 
 395 
4. Results 396 
4.1. Basin-wide clay mineralogy  397 
At basin-scale, the rank order of clay mineral abundance is kaolinite > vermiculite > illite 398 
> smectite (Table S4). Kaolinite was determined to be present if the 7 Å diagnostic (001) 399 
peak collapsed when the K-saturated slide was heated to 550°C for one hour. Illite was 400 
identified at 10 Å for the (001) peak and 5 Å for the (002) peak. Smectite was identified 401 
on the basis of the 14 Å diagnostic peak shifting to 18 Å following Mg-glycerol (Figure 5). 402 
Vermiculite was distinguishable from smectite where the 14 Å peak did not shift to 17 – 403 
18 Å following Mg-glycerol treatment. We identified goethite at the (110) peak at 4.18 Å 404 
and gibbsite at the (002) peak at 4.85 Å (Moore & Reynolds, 1989). The Cuiabá, Taquari, 405 
and Paraguay River muds are particularly enriched in kaolinite, representing >50% of the 406 
clay mineral composition (Figure 6). Substantial in-channel compositional variability was 407 
observed in the Taquari River, which is fed by two large tributary rivers carrying 71% 408 
kaolinite and 43% kaolinite in the plateau. 409 
 410 
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 411 
Figure 5: Representative x-ray diffractograms from oriented clay mounts using diagnostic treatments of 412 

Mg-, Mg-glycerol, K-25°C, and K-550°C for the six provenance regions detailed in Figure 1B. 413 
Diagnostic peaks are labeled for quartz (Q), kaolinite (K), illite (I), smectite (S), vermiculite (V), 414 
goethite (G), and gibbsite (Gi). The x-axis showing ° 2θ is identical across all six panels of the 415 
figure. 416 

 417 
Spatial interpolation enabled additional basin-wide observations. The highest kaolinite 418 
percentages (>70%) were found in the medial Pantanal Basin, at the confluence of the 419 
Paraguay River with the distal distributary channels of the Taquari River (Figure 6). The 420 
medial Pantanal region is known to be regularly inundated with flood waters for some of 421 
the longest periods of the year (Ivory et al., 2019). The northernmost plateau sampling 422 
stations also produced similarly high kaolinite abundances. The northeastern plateau 423 
sampling sites were generally enriched in kaolinite downstream of orthic ferralsols and 424 
ferralic arenosols, whereas the southeastern plateau sampling sites in the Miranda River 425 
watershed with extensive ferric luvisols were depleted of kaolinite (Figures 2B and 6). In 426 
contrast, the Miranda River watershed has the highest concentrations of vermiculite in 427 
the Pantanal. As the Paraguay River flows to the basin outlet in the south, the proportion 428 
of kaolinite in the river muds decreases noticeably. There, vermiculite was more common 429 
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(>50%) in the clay assemblages, particularly at sampling sites fed by rivers draining the 430 
Rio Apa craton (Figure 6) and the South Paraguay Belt. Both the Miranda and Apa rivers 431 
drain the Serra Geral Formation dacite, which produce rhodic ferralsols (Figure 2A) 432 
(Lacerda Filho et al., 2006). Illite was 40 – 60% in the <2 µm fraction in the Paraguay Belt 433 
region where phyllite and amphibolite schist parent lithologies dominate, producing 434 
lithosols and orthic acrisols. The Paraguay Belt contained the highest contributions of illite 435 
to the Pantanal Basin, followed by the São Lourenço River draining surfaces covered by 436 
lithosols, acrisols, and ferralsols (Figures 3A and 6). 437 
 438 

 439 
Figure 6: Spatial interpolation maps of the major clay mineral constituents at 71 sampling stations in the 440 

Pantanal. For each sampling station, the composition was normalized to 100 based on the kaolinite, 441 
illite, and vermiculite percent estimates. Interpolation was not extended to hashed areas.  442 

 443 
The full width at half maximum (FWHM) of the diagnostic peaks shows how crystallinity 444 
changes along the length of the Taquari River (Aparicio et al., 2006). The kaolinite (001) 445 
FWHM remained constant along the length of the megafan, indicating no changes to the 446 
crystallinity. The gibbsite diagnostic peak at 4.85 Å in the Taquari River sampling station 447 
disappears from the proximal to the distal megafan regions. Chlorite was not found, and 448 
smectite was identified only at limited sites such as sample A26 in the medial Taquari 449 
River megafan where the vermiculite and smectite peaks could be clearly disentangled. 450 
The average iron content in illite was 2.19 (dimensionless, computed intensity 451 
(001)/intensity (002)), with much of the highest iron content located in tributaries of the 452 
Jauru, Paraguay, and Cuiabá Rivers in the northern Pantanal.  453 
 454 
Gibbsite and goethite are not abundant clay minerals in samples from the Pantanal (25% 455 
of samples contained neither of these minerals), but they do constitute important minor 456 
components (Figure 7). Sampling sites with both gibbsite and goethite were most 457 
frequently present in the north plateau region, where the mean annual precipitation in the 458 
basin is the greatest (Figure 3A). Gibbsite was most common in samples along the 459 
Taquari River megafan, whereas goethite occurred in samples from the southern plateau 460 
and in the medial lowlands (Figure 7A). Samples with neither mineral were common in 461 
the Rio Apa craton in southern Pantanal. Smectite was identified in ~30% of the 71 462 
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sampling stations (Figure 7B). The presence of smectite appeared to be distributed 463 
across the Pantanal Basin with no specific pattern.  464 
 465 

 466 
Figure 7: (A) Basin-wide map of gibbsite and goethite among 71 stations. Pink (gibbsite + goethite), green 467 

(goethite), yellow (gibbsite), and gray (neither). (B) Map of smectite in the Pantanal marked as 468 
purple (no smectite) or orange (smectite present). These maps did not account for the intensity or 469 
crystallinity of the mineral peaks. 470 

 471 
 472 
4.2. Basin-wide geochemistry 473 
Ternary diagrams showed that most samples exhibited >70% Al2O3, and all lowland 474 
samples >80% Al2O3 (Figure 8A, B). Most samples contained <10% Na2O (Figure 8B) 475 
and 20-30% Fe2O3 + MgO (Figure 8C). Geochemically, all samples from watersheds in 476 
the South Paraguay Belt provenance region and select samples from the Rio Apa craton 477 
provenance region were enriched in Ca, Na, and K and low in Al (Figure 8C). Average 478 
values for geochemical variables in the six provenance regions further show the greatest 479 
SiO2 enrichment in the lowlands provenance region and the least SiO2 enrichment in the 480 
South Paraguay Belt (Table 1). The South Paraguay Belt and plateau provenance regions 481 
had average pH 6.6 and 53% kaolinite, whereas the lowland provenance region and the 482 
North Paraguay Belt had an average pH of 5.8 and 22% kaolinite (Table 2). 483 
 484 
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 485 
Figure 8: Major elemental compositions of fluvial sediments (n = 66) plotted as molar proportions on Al2O3-486 

CaO-Na2O (ACN), Al2O3-(CaO + Na2O + K2O)-(Fe2O3 + MgO) (ACNKFM), and Al2O3-(CaO + 487 
Na2O)-K2O (ACNK). The ACN and ACNK plots form a linear distribution with South Paraguay Belt 488 
samples closer to the C- and the CN-pole, respectively. Most mud samples rich in non-mobile Al 489 
plot closer to the A-pole. The ACNKFM plot helps distinguish the Mg-rich samples.  490 

 491 
The geochemical discrimination plots show decreasing Al2O3 as SiO2 increases, 492 
consistent with quartz addition relative to the UCC standard (Figure 9) (Taylor & 493 
McLennan, 1995). The lowland, Rio Apa craton, and Amazon craton samples followed 494 
this quartz enrichment trend closely, whereas the plateau and Paraguay Belt samples 495 
diverged from this quartz enrichment pattern. Approximately 50% of the samples (Figure 496 
9C) contained less SiO2 than the UCC and were mostly <5 Na2O+K2O+MgO+CaO. Most 497 
samples followed the quartz addition trend (Figure 9C, D). However, the CIA/WIP plot 498 
showed mostly a weathering trend concentrated at 70 – 90 CIA and <40 WIP (Figure 9B). 499 
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 500 
Figure 9: Geochemical discrimination plots are useful to separate effects of weathering and quartz 501 

recycling relative to the upper continental crust (UCC; green star) standard (Taylor & McLennan, 502 
1995). Quartz addition is interpreted as the progressive addition of SiO2, and chemical weathering 503 
is the progressive removal of mobile metals assuming Si and Al are immobile (Garzanti et al., 2010, 504 
2011, 2012). The Al2O3/SiO2 plot shows quartz enrichment patterns for about half of the samples. 505 
The two lower plots suggest weathering control and only weak quartz enrichment. All regions here 506 
are consistent with the areas defined in Figure 1. The quartz enrichment and weathering trends are 507 
approximate in C and D due to the logarithmic scale on the y-axis. The legend is identical to that of 508 
Figure 8.  509 

 510 
Table 1: Chemical elemental abundance summary statistics 511 

Provenance  
Area 

SiO2 
wt% 

Al2O3 
wt% 

Fe2O3 
wt% 

K2O 
wt% 

Na2O 
wt% 

CaO 
wt% 

MgO 
wt% 

Kao Illite Verm CIA WIP 

A 
Lowlands 

71.8 15.0 5.6 1.7 0.1 0.4 0.8 56 5.6 35 85.0 18.0 
Comments: kaolinite comprised 50 – 60% of the Paraguay River clays near the basin outlet. Vermiculite composed 
>30% of the lowland clays downstream of the Rio Apa craton.   

B 
Amazon 
craton 

64.1 18.4 7.4 2.1 0.4 1.1 0.9 51.3 16 32.6 78.7 27.2 

Comments: vermiculite varied 15 – 59%, and illite ranged 7 – 36%.  
C  
Rio Apa 
craton 

64.8 18.2 5.7 3.3 0.8 1.5 0.8 31.4 18.9 38.8 71.3 41.2 
Comments: smectite was common where volcanic rocks formed 16% of the watershed. Kaolinite was most 
common in the sample where foliated metamorphic rocks were the single largest constituent lithology.  

D  
Plateau 

66.6 13.5 9.5 1.6 0.1 1.0 0.9 41.5 12.1 46.7 79.4 19.2 
Comments: Clay assemblages in the Miranda River watersheds were almost dominantly vermiculite.  Two sampling 
stations may drain the same siliciclastic lithologies but produce vastly different proportions of kaolinite, for example. 

E  
South 
Paraguay 
Belt 

59.3 12.5 5.5 1.7 0.1 18.7 1.3 18.5 30.3 51.2 34.6 66.4 
Comments: kaolinite reached the lowest proportions of any area in the Pantanal. Biochemical lithologies were the 
main parent rock of the watersheds, but clay assemblages were more commonly controlled by the adjacent 
metamorphic lithologies. 

F  
North 
Paraguay 
Belt 

68.1 15.3 7.2 2.5 0.1 0.3 1.1 37.3 42.6 20.2 81.4 25.8 

Comments: many simples contained >50% illite, which exceeds all other regions in the Pantanal.  
Note. Provenance regions are lowlands (A), Amazon craton (B), Rio Apa craton (C), plateau (D), South 512 
Paraguay Belt (E), and North Paraguay Belt (F). Average smectite values were not determined due to 513 
occurrence in few sampling sites. Abbreviations are Kao = kaolinite and Verm = vermiculite. 514 
 515 
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Table 2: pH values for selected samples 516 
Sample pH %Kaolinite Kaolinite FWHM 
A2 5.34 57 0.3542 
A3 5.40 51 0.4723 
F2 5.86 34 0.4723 
F1 5.88 73 0.3542 
C1 5.94 39 0.3542 
C8 5.97 39 0.3542 
A27 5.98 52 0.3542 
B1 5.99 77 0.3542 
C2 6.33 5 0.3542 
D1 6.37 25 0.3542 
B2 6.58 56 0.3542 
E1 6.62 17 0.4723 
E3 6.82 15 0.2952 
D3 6.85 12 0.3542 

Note. Samples are ordered by increasing pH representing the six provenance regions: lowlands (A), 517 
Amazon craton (B), Rio Apa craton (C), plateau (D), South Paraguay Belt (E), and North Paraguay Belt (F). 518 
The sample with the largest watershed in each provenance region was chosen to obtain the net cumulative 519 
pH value. 520 
 521 
4.3. Weathering indices and statistical analysis 522 
Table 1 provides summary statistics across all six provenance regions. The CIA and WIP 523 
values showed that samples from the lowlands provenance region were the most 524 
weathered, especially near the Taquari megafan where high values (83 – 94) of the CIA 525 
were recorded. Weathering intensities measured by WIP were more variable in the 526 
lowlands (10 – 36) (Figure 10). The Itiquira and Piquiri Rivers draining the plateau 527 
highlands immediately north of the Taquari River produced silt plus clay minerals that 528 
were consistently highly weathered as indicated by the CIA and WIP. The weathering 529 
indices reflected the clay mineral proportions deduced by XRD; the areas with the 530 
greatest kaolinite proportions coincided with the highest CIA values and the lowest WIP 531 
values for the Piquiri, Cuiabá, São Lourenço, and the Paraguay River at the Taquari 532 
megafan (Figure 10). In contrast, the lowest CIA values and highest WIP values were 533 
recorded in the Rio Apa and South Paraguay Belt regions (Figure 10). 534 
 535 

 536 
Figure 10: Spatial interpolation maps of chemical weathering indices based on the molar proportions of the 537 

major elemental data from 66 sampling stations. 538 
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Fe2O3 and metamorphic parent lithologies loaded positively on axis 1 of the canonical 539 
correspondence analysis (Figure 11). The SiO2, K2O, and average watershed slope 540 
loaded negatively on axis 1. The average watershed slope, MgO, and Fe2O3 loaded 541 
positively whereas watershed area, sedimentary parent rocks, and SiO2 loaded 542 
negatively on axis 2. All lowland samples plotted in negative axis 2 space, whereas most 543 
of the Paraguay Belt samples plotted in positive axis 2 space. Two large clusters of data 544 
points are distinguishable. The first cluster is oriented diagonally along a continuum 545 
formed by the SiO2 and Fe2O3 rays with n = 44 sampling sites. The samples with more 546 
SiO2 are also closer to the abundance of kaolinite, and samples with more Fe2O3 are 547 
associated with vermiculite. The quadrant with vermiculite is characterized by significantly 548 
more MgO and slightly more Al2O3, as suggested by the length of the shorter ray for Al2O3. 549 
The second cluster of data is oriented perpendicular to the first cluster, composed mostly 550 
of Paraguay Belt samples and an association with illite, K2O, average watershed slope, 551 
and elevation of the sampling stations.  552 
 553 

 554 
Figure 11: Canonical correspondence analysis shows that the South and North Paraguay Belt areas are 555 

enriched in K2O, whereas the sampling stations in the Miranda River basin in the plateau region 556 
are enriched in Fe2O2 in the first axis. In the second axis, most of the Rio Apa craton and Paraguay 557 
Belt sampling stations show enriched MgO and CaO.  558 

 559 
5. Discussion 560 
5.1. Insights from clay mineralogy 561 
5.1.1. Climate control 562 
The Pantanal Basin is warm and seasonally wet with open cerrado savanna vegetation 563 
in the hinterland areas (Cole, 1960), where a pronounced hydroclimate gradient in rainfall 564 
and seasonality controls modern clay distribution. The Taquari River forms a weathering 565 
hinge between the increased weathering intensity to its north and reduced weathering 566 
intensity to its south. The greater rainfall and shorter dry season north of the Taquari River 567 
results in high kaolinite production as bedrock and soils are leached (Goldich, 1938; 568 
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Depetris & Griffin, 1968; Singer, 1980; Garzanti et al., 2014; Guinoiseau et al., 2021). 569 
Most neoformed kaolinite in soils is subsequently transported downstream towards the 570 
Paraguay River in the suspended sediment fraction (e.g., Depetris & Probst, 1998). The 571 
fluvial sediment samples in the medial Pantanal reflect the cumulative climate-driven 572 
weathering north of the Taquari River hinge. On the basis of greater kaolinite abundance 573 
in the northern Pantanal, our data broadly support the hypothesis that mean annual 574 
precipitation controls clay mineralogy. 575 
 576 
As the clay minerals are carried as suspended loads, their composition is subsequently 577 
transformed (Setti et al., 2014). Detrital clays such as vermiculite and illite can be 578 
compared with transformed clays such as kaolinite and smectite as a measure of 579 
chemical weathering and mechanical erosion (Shover, 1963; Vanderaveroet et al., 2000; 580 
Setti et al., 2014). The Jauru and Paraguay River clays west of the Província Serrana are 581 
mostly kaolinite, plus illite from the North Paraguay Belt. These clays likely originated from 582 
the Amazon craton and the Paraguay Belt lithologies, in addition to the siliciclastic plateau 583 
at the northernmost end of the basin. The illite (> 60%) in the uppermost Cuiabá River 584 
and along small watersheds of the North Paraguay Belt points to rapid mechanical 585 
weathering (e.g., Selvaraj & Chen, 2006). Mechanical weathering breaks down outcrops 586 
of the muscovite-bearing Cuiabá Group rocks (Alvarenga et al., 2011; Vasconcelos et al., 587 
2015). This interpretation is consistent with the lithosols, which are thin and poorly 588 
developed (Camargo & Bennema, 1966). Following the confluence with the Cuiabá River, 589 
the Paraguay River carries more kaolinite, similar to levels recorded in the tributaries of 590 
the Cuiabá River. 591 
 592 
Lower kaolinite proportions in samples from sites south of the Taquari River are 593 
interpreted to be linked to reduced rainfall (~1200 mm/y) and increased length of the dry 594 
season (4 – 5 months). In contrast, areas north of the Taquari River are characterized by 595 
~1800 mm/y and 1 – 2 month-long dry season. This pattern of reduced weathering 596 
intensity that produces more detrital clays (e.g., illite and vermiculite) relative to 597 
transformed clays (e.g., kaolinite and smectite) supports our hypothesis. 598 
 599 
The 2:1 type clays were primarily vermiculite, commonly a byproduct of incomplete 600 
weathering of biotite (Cleaves et al., 1970; Ojanuga, 1973; Johnsson & Meade, 1990). 601 
The Paraguay River clays downstream of the confluence with the Taquari and Miranda 602 
Rivers begin to incorporate substantial vermiculite. The South Paraguay Belt region and 603 
the plateau provenance region south of the Taquari River weathering hinge contain ferric 604 
luvisols overlying carbonate and foliated metamorphic rocks, a unique combination of 605 
geological factors in the Pantanal Basin. As the Paraguay River flows along the Rio Apa 606 
craton towards the basin outlet at the confluence with the Apa River, the clay composition 607 
is modified by the illite and vermiculite chemically and mechanically eroded from the 608 
craton. The intensity of weathering inferred from the relative proportions of 50% kaolinite 609 
and 50% illite + vermiculite would indicate incomplete weathering closer to the outlet 610 
(samples A2 and A3; Table S1) than in the medial Pantanal Basin (samples A6 – A9; 611 
Table S1). The modification of the Paraguay River suspended clays attests to non-linear 612 
compositional changes downstream.  613 
 614 
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5.1.2. Soil control 615 
The composition of extant soils in the provenance regions is interpreted to be an important 616 
secondary control on modern clay mineralogy and chemistry. Although we did not 617 
examine the mineralogy of soil profiles adjacent to each sample, we can infer soil 618 
properties and clays based on the soil classification map (Figure 2B). Using the soil 619 
classification map is sufficient for this study, because each sample is an integrated result 620 
of the cumulative processes in the entire upstream watershed. 621 
 622 
The extensive availability of kaolinite in the dominant soils helps to explain higher 623 
proportions of kaolinite in modern fluvial samples north of the Taquari weathering hinge. 624 
Soils in the northern Pantanal Basin were described as acrisols, arenosols, and ferralsols. 625 
The acrisols and ferralsols are known to have high amounts of kaolinite and gibbsite clays 626 
in the topsoil and subsoil, whereas the arenosols contain kaolinite and illite primarily in 627 
the subsoil (Ito & Wagai, 2017). The abundant kaolinite usually occurs in lateritic soils 628 
(e.g., Truckenbrodt et al., 1991), which may appear as ferralsols or ferralic arenosols in 629 
the Pantanal (Figure 2B) (Righi & Meunier, 1995; Mathian et al., 2020). Some of the 630 
kaolinite formed from laterite is instead replaced by hematite (Ambrosi et al., 1986), as 631 
observed by the iron-rich concretions (~1 cm in diameter) on the armored, wind-deflated 632 
surface of the Taquari River’s lateritic soils (Figure 12). Although not shown on the map, 633 
gleysols and plinthosols also contribute to the high occurrence of kaolinite in the northern 634 
Pantanal soils (Coringa et al., 2012). 635 
 636 
Soils in the southern Pantanal Basin are distinguished by the extensive development of 637 
luvisols that contain greater proportions of illite in both the topsoil and subsoil (Ito & 638 
Wagai, 2017; Warr, 2022). The South Paraguay Belt soils are dominantly mollisols, 639 
containing primarily vermiculite, followed by illite (Warr, 2022). Mollisols are interpreted 640 
as key contributors to the higher proportions of vermiculite in the southern Pantanal. Soil 641 
clay mineralogy and the processes may be altered due to human-induced land use 642 
changes (e.g., Céspedes-Payret et al., 2012; Fink et al., 2014; Austin et al., 2018). 643 
However, the relationship between land use and fluvial clay minerals remains unclear, so 644 
disentangling the anthropogenic land use effect on clays from each sample is not feasible.   645 
The presence of gibbsite is an indicator of intense weathering and desilication (Certini et 646 
al., 2006; Reatto et al., 2008). Gibbsite is an aluminum hydroxide associated with strong 647 
hydrolysis and bauxitization processes (Chamley, 1989; Velde & Meunier, 2008). 648 
Bauxitization, or the formation of aluminum ore, occurs when extensive hydrolysis leads 649 
to gibbsite authigenesis. We infer that the gibbsite was eroded primarily from the 650 
surrounding soil cover (phaeozems, luvisols, and ferralsols). The northeastern Pantanal 651 
including the São Lourenço and Cuiaba Rivers are sources of gibbsite. Gibbsite peaks 652 
were also identified in the Amazon craton rivers and the South Paraguay Belt samples. 653 
The gibbsite identified in the medial Paraguay River, upstream of the confluence with the 654 
Taquari River, were likely derived from erosion of lateritic soils in the uppermost regions 655 
of the plateau provenance region. Iron-bearing minerals, particularly hematite and 656 
goethite, are common in lateritic soils (Madeira et al., 1997). However, the occurrence of 657 
gibbsite and goethite was not consistently related to higher or lower kaolinite proportions. 658 
This observation suggests that the highest proportions of kaolinite are independent of 659 
goethite and gibbsite occurrence. 660 
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 661 
Figure 12: Uppermost hinterland of the Taquari River watershed consists of (A) deeply incised gullies 662 

facilitating sediment export to the lowlands. The surfaces are commonly characterized by friable 663 
iron-rich concretions, known as ferricretes (B, C, D). Photo credit: E. Lo. 664 

 665 
5.1.3. Geological and slope control 666 
When illite is generated from metamorphic rocks, rapid removal of material is often 667 
implicated, which is expected in a tropical environment with heavy seasonal rainfall like 668 
the Pantanal (Selvaraj & Chen, 2006; Velde & Meunier, 2008; Wang et al., 2011). The 669 
close spatial relationship between illite abundances and the North and South Paraguay 670 
Belt provenance regions suggests a direct contribution from the muscovite-rich 671 
greenschist facies (Almeida et al., 1976). The broad spatial occurrence of illite in the North 672 
Paraguay Belt region is evidence of mechanical bedrock erosion observed in regions of 673 
high precipitation (e.g., Liu et al., 2012). Calculation of iron content in the mica structure 674 
yielded a relatively high dimensionless average value of 2.19 (dimensionless, computed 675 
intensity (001)/intensity (002)) (Brown & Brindley, 1980; Deconinck et al., 1988). High iron 676 
availability is a prerequisite for authigenesis of ferric illite (Furquim et al., 2010), consistent 677 
with tropical environments that generate extensive iron oxides (Liptzin & Silver, 2009). 678 
The largest values for Fe content in the illite were mostly concentrated north of the Taquari 679 
weathering hinge. The increased distribution of illite in the North Paraguay Belt is 680 
consistent with present-day weathering conditions. 681 
 682 
The weathering of phyllite and amphibolite schist outcrops along the Salobra River, the 683 
Miranda River, and the uppermost Apa River are the best candidates for vermiculite 684 
generation. Select sampling stations in the Miranda River contain as much as 90% 685 
vermiculite, which we attribute to the erosion of adjacent Cuiabá Group phyllites (Lacerda 686 
Filho et al., 2006). Dacites such as the Serra Geral Formation in the study area have 687 
generated vermiculite clays in other regions (Harvey & Beck, 1962). Illite may also be 688 
altered to vermiculite as K is released in the soils, creating an interlayered illite-vermiculite 689 
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mineral similar to Amazon Basin soils and verified with NEWMOD II fitting (Han et al., 690 
2014; Delarmelinda et al., 2017). Sample E1 in the South Paraguay Belt region contained 691 
an intermediate peak at 11.9 Å suggesting the presence of hydroxy-interlayered 692 
vermiculite (HIV), implicating a mixed layer illite-HIV. 693 
 694 
The average watershed slope regulates fluvial incision and channel behavior. Steeper 695 
slopes favor higher mass wasting rates, incised river channels, and minimal pedogenic 696 
development. In contrast, the low-slope floodplains act as temporary sinks for 697 
unconsolidated, highly weathered fine sediment subject to fluvial channel migration. The 698 
Taquari River at the distal Zé da Costa avulsion (sample A25; Table S1) contained greater 699 
amounts of vermiculite than at the medial Caronal avulsion (samples A26-A27; Table S1), 700 
suggesting that reworked floodplain sediments may be an important contribution of 701 
vermiculite in the distal Taquari River. The exhumation of floodplain deposits can 702 
remobilize clays that were deposited during drier Holocene climatic conditions where 703 
transformation of clays was less efficient (McGlue et al., 2015, 2017; Novello et al., 2017). 704 
Vermiculite is diluted by dominantly kaolinitic tributary inputs when the Taquari River 705 
discharges into the Paraguay River. 706 
 707 
Clay minerals may represent inherited weathering phases from recycling of more ancient 708 
sedimentary rocks that are exhumed to the surface environment (Eberl et al., 1997; 709 
Wilson, 1999; Bhattacharyya et al., 2000). For example, inherited clays may come from 710 
clay coats that formed prior to lithification of aeolian sands into arenites (Wilson, 1992). 711 
The Mesozoic Botucatu Formation in the plateau provenance region is an aeolian 712 
sandstone with amorphous silica, pore-filling, and kaolinite and smectite grain coatings 713 
(França et al., 2003; Hirata et al., 2011; Bertolini et al., 2020; 2021). The Mesozoic Era 714 
was characterized by hothouse conditions (Holz, 2015) followed by diagenetic processes 715 
that contributed to the generation of kaolinite in the Botucatu Formation (Corrêa et al., 716 
2021). This formation may have contributed an unknown amount of inherited kaolinite to 717 
the silt plus clay fraction recovered in modern river samples (Balan et al., 2007). Inherited 718 
kaolinite is commonly more ordered than neoformed kaolinite (Balan et al., 2007; Bauluz 719 
et al., 2008), such that higher crystallinity with lower FWHM can indicate inheritance. 720 
Samples with the most disordered (neoformed) kaolinite (FWHM 0.45 ° 2θ) were located 721 
at the confluence of the Taquari and Paraguay Rivers, where elevations are very low and 722 
the annual floodwater inundation period is high (Ivory et al., 2019). Furian et al. (2002) 723 
likewise encountered kaolinite in poorly drained areas of the Pantanal. The high levels of 724 
kaolinite at the confluence of the distal Taquari River and the Paraguay River further attest 725 
to kaolinite authigenesis associated with strong hydrolysis (Chamley, 1989). Estimating 726 
inherited versus neoformed kaolinite remains challenging, because studies such as Balan 727 
et al. (2007) examined these processes primarily in soil profiles, not in modern fluvial 728 
samples.  729 
 730 
5.2. Insights from geochemistry 731 
Clay minerals generated today across the Pantanal Basin are controlled primarily by 732 
climate-induced chemical weathering and secondarily by soil and parent lithology. Nearly 733 
all Rio Apa craton samples were relatively enriched in Na, K, and Al compared to samples 734 
from rivers draining the other provenance regions. Similarly, the Amazon craton samples 735 
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had high relative Na, K, and Al, but less than that of the Rio Apa craton samples. South 736 
Paraguay Belt samples were all enriched in Fe and Ca. Most of the lowland samples were 737 
high in Si, reflecting the quartzose nature of muds where repeated cycles of flooding and 738 
channel avulsions enhance sediment reworking (e.g., Louzada et al., 2021). The rivers 739 
draining provenance regions with the lowest CIA values were the Rio Apa craton and the 740 
South Paraguay Belt, suggesting that the weathering effect for these metamorphic and 741 
carbonate rocks was low, most likely due to the reduced mean annual rainfall (~1200 742 
mm/y) (Fick & Hijmans, 2017). These two regions also had WIP >40, indicating reduced 743 
quartz recycling relative to the other four provenance regions. Most samples from the 744 
Pantanal had CIA 75 – 95 and had WIP <20, attesting to both high quartz recycling and 745 
extensive weathering effects (Figure 9B). Our spatial distribution maps show that this 746 
effect was most concentrated in the medial Pantanal Basin, supplied mainly by the 747 
Cuiabá, São Lourenço, and Piquiri Rivers (Figure 10). Maximum quartz recycling and 748 
weathering effects were consistent with the highest quartz compositions observed in 749 
Paraguay River fine fraction samples (n = 7) near the confluence of the Paraguay River 750 
with the Cuiabá and Taquari Rivers. The lowest WIP values in the basin are likely linked 751 
to the Cretaceous Botucatu Formation and the Cretaceous Bauru Formation quartz 752 
arenites of the plateau provenance region (Fernandes & Magalhães Ribeiro, 2015; 753 
Bertolini et al., 2021). Because quartz arenite weathering contributes little to the clay 754 
fraction in extant river muds, we interpret that most of the depletion of mobile ions 755 
occurred through kaolinite authigenesis by transformation. This view is consistent with 756 
the presence of goethite and gibbsite in unconsolidated sediments of the Botucatu 757 
Formation (Fagundes & Zuquette, 2011). 758 
 759 
5.3. Clay transformation in the Plata River 760 
The clay composition of the Pantanal back-bulge is distinguishable from the Andean 761 
foreland basin clays. The Paraguay, Paraná, and Uruguay Rivers are the primary sources 762 
of kaolinite to the Plata River estuary (Table S7), which ranges from 50 – 75% in the 763 
suspended load (Figure 13) (Depetris & Griffin, 1968; Manassero et al., 2008). Samples 764 
downstream of the Pantanal outlet were commonly 15 – 20% kaolinite, indicating dilution 765 
of the kaolinite by sub-Andes-derived illite. The Bermejo River is an example of 766 
concentrated illite supply to the Paraguay River (Bertolino & Depetris, 1992; McGlue et 767 
al., 2016; Repasch et al., 2021). Bermejo clays were <5% kaolinite near the thrust front, 768 
and the kaolinite remained <5% as far as 40 km downstream (Bertolino & Depetris, 1992). 769 
Illite comprised ~60% of clay composition throughout the length of the Bermejo River to 770 
its confluence with the Paraguay River. Other rivers such as the Pilcomayo and the 771 
Salado Rivers that drain the Andean thrust belt were similarly enriched in illite (Bertolino 772 
& Depetris, 1992; McGlue et al., 2016). We ascribe the dilution of kaolinite in the Paraguay 773 
and Paraná Rivers to these illite-rich clay compositions draining the Andean foothills. The 774 
back-bulge and interior craton are dominated by kaolinite, thereby creating ancient 775 
wetland deposits that are also rich in kaolinite (e.g., Tineo et al., 2022). In contrast, the 776 
thrust front sediments are dominated by illite and smectite, with the latter influenced by 777 
the dry climate of the Chaco Seco (McGlue et al., 2016). 778 
 779 
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 780 
 781 

Figure 13: Summary of mud transport from the Paraguay River to the confluence with the Pilcomayo, 782 
Bermejo, Paraná, and Salado Rivers to the Plata River mouth. Data (n = 84) from past studies 783 
(Depetris & Griffin, 1968; Bertolino & Depetris, 1992; Ronco et al., 2001; Manassero et al., 2008; 784 
McGlue et al., 2016) (Table S7). Pantanal samples in the hatched area are from this study. The 785 
rivers were obtained from the HydroSheds database (Lehner et al., 2008), and the Plata River 786 
watershed was downloaded from the Transboundary Freshwater Diplomacy Database, College of 787 
Earth, Ocean, and Atmospheric Sciences, Oregon State University. Additional information about 788 
the TFDD can be found at: https://transboundarywaters.oregonstate.edu. 789 

 790 
We find that the dominantly kaolinite clay composition at the Pantanal outlet is controlled 791 
by climate > soil > lithology. We interpret that because vermiculite clays were not present 792 
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in downstream clay fractions, this observation suggests that vermiculite might be diluted 793 
by illite as it exits the Pantanal Basin. In addition to this dilution effect, we identify three 794 
potential factors for the rapid change in clay composition. First, the decreased kaolinite in 795 
the Paraguay and the Paraná Rivers roughly coincide with the boundary between tropical 796 
savanna climate (Aw) and the humid subtropical (Cfa) zones (Beck et al., 2018). 797 
Campodonico et al. (2016) demonstrate that the CIA decreases downstream in the higher 798 
latitude and sub-tropical climate regions. Second, the adjacent lithologies may be 799 
supplying illite locally to the fluvial clays. Illite was formed from burial diagenesis (Lanson 800 
et al., 2002) and locally eroded into the Paraguay River as it flowed past the Rio Apa 801 
craton, which diluted the sediment samples. The lower Paraguay River flows adjacent to 802 
the Carboniferous Coronel Oviedo Group, consisting of shale, arenite, diamictite, and 803 
glacial tills (Orué, 1996). Third, kaolinite-rich clays might be preserved near the wetland 804 
but not preserved in much farther downstream sediments. Further systematic 805 
investigations of downstream clay compositions and heavy mineral suites to constrain the 806 
controls on clay composition in the entire Plata River catchment is warranted. This study 807 
of modern fluvial clays is an important contribution to understanding clay distribution in 808 
modern river sediments and provides a key source of information to improve the accuracy 809 
of global clay distribution models (Ito & Wagai, 2017; Warr, 2022).  810 
 811 
6. Conclusions 812 
This study of modern fluvial clays plus silt from 74 sampling sites revealed the spatial 813 
distribution of clay minerals and major fine-fraction chemical elements across an extant 814 
tropical back-bulge basin. Mineralogy and chemical weathering indices (CIA and WIP) 815 
showed distinct areas of clay generation among the provenance regions. The controls on 816 
fine-fraction mineralogy were systematically assessed, and the implications for the 817 
downstream fine sediment in the Plata River were summarized. 818 
 819 
- The clay proportions follow the rank order pattern of kaolinite > vermiculite > illite > 820 
smectite, but these clays are not evenly distributed. The Taquari River forms a prominent 821 
E-W trending hinge across the Pantanal Basin, where more intensive leaching and soil 822 
authigenesis produce more kaolinite north of the river. Vermiculite was more common 823 
south of the Taquari River, and illite was most common along the North Paraguay Belt. 824 
Gibbsite and goethite in the clay-sized fraction signaled contribution from heavily 825 
weathered soils such as laterites. 826 
 827 
- Major elemental geochemistry of the clay plus silt was used to calculate average CIA = 828 
76.4 and average WIP = 27.6 throughout the Pantanal. The medial Pantanal Basin is 829 
highly weathered at the confluence of the Taquari and Paraguay Rivers, representing the 830 
cumulative weathering effects of the northern Pantanal. The southern Pantanal fine 831 
sediments along the Rio Apa craton and the South Paraguay Belt were poorly weathered, 832 
displaying greater values of CaO, Na2O, and K2O consistent with climate and parent 833 
rocks.  834 
 835 
- The main controls on modern fluvial clay plus silt were climate > soil > parent rock. This 836 
interpretation was supported by the Taquari River weathering hinge, where kaolinite-rich 837 
clays north of the river were linked to greater precipitation and shorter dry season. This 838 
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same region also contained more kaolinite-rich soils such as acrisols and ferralsols. In 839 
contrast, mollisols and luvisols coupled with reduced precipitation and longer dry seasons 840 
in the southern Pantanal allowed for more detrital clays: illite and vermiculite. Illite was 841 
especially linked to low-grade metamorphic lithologies present only in the Paraguay Belt. 842 
 843 
- The Pantanal Basin’s clay mineral composition near the basin outlet is primarily kaolinite 844 
and vermiculite, contrasting sharply with detrital back-bulge clays from the sub-tropics 845 
(Bermejo, Pilcomayo, etc.), which are dominated by illite and smectite. The illite 846 
transported from the sub-Andean regions significantly dilutes the proportion of kaolinite 847 
in the Plata River. This composition likely generates distinct mudstones in the 848 
stratigraphy, with implications for interpretations of the rock record. 849 
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