Data integration in systems genetics and aging research
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Abstract—Human life expectancy has dramatically improved over the course of the last century. Although this reflects a
global improvement in sanitation and medical care, this also implies that more people suffer from diseases that typically
manifest later in life, like Alzheimer and atherosclerosis. Increasing healthspan by delaying or reverting the development of
these age-related diseases has therefore become an urgent challenge in biomedical research. Research in this field is
complicated by the multi-factorial nature of age-related diseases. They are rooted in complex physiological mechanisms
impacted by heritable, environment and life-style factors that can be unique to each individual. Although technological
advances in high-throughput biomolecular assays have enabled researchers to investigate individual physiology at the
molecular level, integrating information about its different components, and accounting for individual variations remains a
challenge. We are using a large collection of “omics” and phenotype data derived from the BXD mouse genetic diversity panel
to explore how good data management practices, as fostered by the FAIR principles, paired with an explainable artificial
intelligence framework, can provide solutions to decipher the complex roots of age-related diseases. These developments will
help to propose innovative approaches to extend healthspan in the aging global population.
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I.  INTRODUCTION

Age-related diseases are associated to a number of heritable, environmental and life-style factors that impact
physiology. In this context, the systems genetics community investigates the links between genetics, metabolism and
individuals’ traits to discover underlying molecular mechanisms, which could be utilized to design therapies and
treatments. In the context of aging, the aim would be to reverse its effect and delay the development of its associated
disorders. Systems genetics leverages the high-throughput capacity of “omics” technologies coupled with the sample
availability and controlled experimental conditions offered by model organisms to assess biomolecular mechanisms
in cells and tissues. While generating enormous amount of biomolecular data, the research community generally
focuses on assessing the links between pairs of biological layers, such as associations between genetics and
phenotypes, or between genetics and gene expression. Although this approach allows to reveal associations between
individual factors, it hardly addresses interactions between more than two factors and patterns involving multiple
tissues and multiple layers of physiological regulation. In contrast, there is increasing evidence that essential
mechanisms underlying complex disorders can only be unveiled by considering multiple layers of biological
observations together [1]. Despite this, only few attempts to integrate and analyze diverse biomedical data as a whole
have been attempted. Indeed, both the construction of integrated knowledge bases, and the subsequent application
of analysis methods, are technically challenging. Here, we summarize the main challenges for data integration in
biomedicine, highlight trends and describe our current effort to overcome these challenges.

1.  AGE-RELATED DISEASES

A. The leading causes of premature death

As the global population grows, and life expectancy increases, so does the number of people at risk for developing
age-related diseases. Indeed, advances in sanitation, medicine and food security have contributed to considerably
reduce child mortality and expand lifespan globally along the course of the last century. Subsequently, improving the
health of the elderly and extending the so-called healthspan has emerged as a new challenge in medicine, as the
leading causes of premature death moved from infections to cardiovascular diseases and cancer [2].
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B. Multiple risk factors

Age-related diseases represent a large spectrum of disorders, including neurodegenerative, cardiovascular and
musculoskeletal diseases as well as cancer. The development of these disorders is typically multi-factorial. Along
with age, important risk factors include genetics, diet, life-style, smoke and environmental exposures, as well as one’s
history of diseases and medication. In addition, intricate factors, such as the accumulation of epigenetic changes
throughout life, referred to as the epigenetic “clock”, the microbiome, and interactions between factors, are also
important (Fig.1) [3]-[6]. As the unique combination of risk factors certainly differs from one patient to another,
individual variations need to be taken into account both in research and the clinic. For example, studies in mouse
have shown that the effect of preventive interventions aiming at extending lifespan, such as dietary restriction, can
vary from beneficial to detrimental depending on one’s genetic makeup [7]. Similarly, the composition of the
intestinal microbiome has been shown to affect how food is absorbed and metabolized [8], [9].

At the cellular level, aging is characterized by the loss of intracellular proteostasis, mitochondrial homeostasis,
and epigentetic alterations (Fig. 1) [10]. Identifying bio-molecular pathways that can be exploited to slow down, delay
or reverse these biological aging processes is therefore critical to address the leading health threats of today and
tomorrow. This requires the investigation of physiological mechanisms at the molecular level across organs and
tissues, while taking inter-individual variations into account.

1. PRECISION MEDICINE

A. Research approach

Precision — or personalized — medicine addresses complex diseases by adapting therapeutic approaches to the
individual characteristics of the patient, and in particular to the genetics. This approach has been unlocked by the
development of high-throughput biomolecular assays, or “omics”, technologies, which allow to asses individuals
physiology at the molecular level by drawing biomolecular profiles of tissues. From the research perspective,
investigating the physiological mechanisms underlying complex conditions demands to profile numerous tissues, if
not single cells, from a large diversity of subjects across multiple experimental conditions [11]. Such comprehensive
research cannot be easily carried out in humans, mainly because the access to samples, and the control over important
factors such as genetics, diet or environmental exposures, is limited. Indeed, although epidemiological studies can
provide insights into the role of many factors that can reasonably be measured in human settings, such as genetics,
clinical phenotypes and environmental factors, true experimentation to decipher of the underlying biomolecular
mechanisms requires the use of experimental models. Relevant models range from cell lines and nematodes to larger
organisms like mammals, depending on the question at hand.

B. Mouse genetic diversity panels

In order to study complex systems, researcher’s strategy is to control as many variables as can be while measuring
as many of those that cannot be controlled and simultaneously inducing controlled variations of one or multiple
variables. With this regards, mouse genetic diversity panels are a model of choice to assess the links between genetic
variations and physiological traits associated with complex conditions, and are seen as the experimental counterpart
of precision medicine [12]. Indeed, these panels are composed of genetically diverse inbred strains of mice and are
designed to provide a stable and reproducible genetic diversity across cohorts. This model therefore allows to
introduce defined genetic variations while simultaneously controlling environmental conditions and diet while
providing access to a large variety of biological samples and enabling the measurement of a variety of phenotypes.

C. Translational research

Although most of our knowledge in fundamental biology comes from model organisms, there are undeniable
differences between human and mouse physiology. The research process in precision medicine is therefore a
continuous cycle driven by epidemiological observations leading to the design of experiments on model organisms,
and which results further demand validation in human settings [13]. Eventually, this translational process can lead to
the prioritization and design of further human studies.

IV. SYSTEMS GENETICS

A. Associative studies

Linking genetic variations to phenotypes or to biomolecular profiles of tissues has been classically carried on in
so called systems genetics studies using associative approaches, such as Genome-Wide Association Studies (GWAS)
and Quantitative Trait Locus (QTL) mapping (Fig. 1)
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Fig. 1Cellular aging is associated to mitochondrial dysfunction, the loss of
proteostasis and epigenetic alteration and impacted by heritable, life-style
and environmental factors

2A). These approaches screen “omics” data for any association with phenotypes, gene variations or any observation
on other “omics” layers [ 14]. Although these approaches unveiled numerous insights into the genetic roots of complex
diseases, they may not exploit the full potential of the multi-modal “omics” datasets that can be collected. Indeed,
such associative approaches are limited to assessing the links between pairs of biological layers, such as between
genetics and phenotypes, or between gene expression and phenotypes (Fig. 2A). They are therefore bound to catch
the “low-hanging fruits™: single factors clearly associated with phenotypes (e.g. the genetic variant A is associated
with a high body mass). This can miss important patterns of interactions across multiple layers of biological
observations [15]: what if the genetic variant A was associated with a high body mass, but only if gene B is highly
expressed in the liver while bacteria X is harbored in the gut?

B. Integrative analyses

Age-related diseases such as atherosclerosis cannot be explained by a single factor, like genetics alone, and in fact result from
combinations of factors. Therefore, a large potential for discoveries and associated therapeutic opportunities is seen
in integrative approaches that assess multiple factors together (Fig. 2B) [1]. In addition, patients Electronic Health
Records (EHR), as well as observations from model organisms (e.g. biomolecular “omics” data) generally have a
sparse nature. For example, EHR data collection depends on patients condition and specific needs, thus different sets
of data, measured in different sequences at different time points, are generally not available for each patient.
Similarly, all studies have a different design, which prioritizes the investigation of certain tissues with different
methods according to the scientific question at hand and available resources. In this context, observations across
biological layers and studies may complement each-other: information that may be present, but could not be
measured, in one biological layer, may be available from another mechanistically connected layer. For instance, genes
(DNA), gene expression (RNA) and proteins are linked by the central dogma of cell biology: genes are transcribed
into mMRNA, which is translated into proteins. Proteins in turn form the backbone of metabolic pathways by acting on
other biomolecules in complex cascades of biochemical reactions. Despite these links, observations from one layer
are not sufficient to predict the state of other layers because of the many mechanisms of regulation that exist within
and between these layers. However, integrating multiple related layers of biological data can offer a more informative
picture than if considering each layer separately because they may complement each other while interactions between
them could be also taken into account. Last but not least, integrative studies may highlight which type of observation,
and which tissue, may carry the most relevant information with regard to a particular disease. This could help
prioritizing experiments and guiding experimental designs to maximize the “return on investment” of generally
expensive data collection processes.

Overall, and despite being collected under controlled genetic and environmental conditions, “omics” datasets
derived from animal models of genetic diversity are complex, noisy and incomplete [14]. However, they still remain
more comprehensive and coherent than their counterparts in human settings. While the need to overcome the
limitations of pairwise associative approaches like GWAS is increasingly recognized, considering multiple layers of
biological observations in integrative approaches remains challenging and to date only a few attempts were made in
the field [1]. This is due to two main challenges: 1) the combination of heterogeneous and sparse data into coherent
knowledge bases. And 2) deriving actionable insights out of complex patterns.
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V. OPEN SCIENCE AND DATA INTEGRATION

A. Metadata are the glue that links datasets

Conceptually, the potential for the discovery of complex patterns grows with the heterogeneity and diversity of
the analyzed data. But in order to keep results generalizable, the number of observations, or sample size, must grow
as the diversity of considered observations increases (Fig. 2C). Unfortunately, study budgets rarely allow to
simultaneously collect large amount of diverse data from large cohorts. Instead, studies generally face a trade-off
between the sample size and the number of observations and tissues collected, and prioritize these according to their
scientific objectives. Combining data from multiple studies is therefore the solution to reach sample sizes that may
not be achievable in a single study, and unlocking the investigation of new scientific questions. However, the
construction of a knowledge base from multiple independent datasets greatly depends on the interoperability of these
datasets and essentially relies on the existence of sufficiently rich, detailed and standardized metadata (Fig. 2D).
While vertical integration (i.e. within a study) of datasets may be facilitated by the use of common nomenclatures
and annotations within a same study, horizontal integration (i.e. across studies) is typically more challenging, as
practices can differ between research groups.

B. The FAIR principles

The FAIR principles were first formulated in 2016, as a mean to enable new discoveries by facilitating data
integration and reuse [16]. These principles promote data management practices that enable the integration of
compatible, or complementary, datasets. Indeed, Inter-operability and Reuse require that 1) data and metadata should
be recorded using standard formats, notations and vocabularies, so that independent researchers could understand
them and link information across datasets with as little ambiguity as possible. And 2), that the datasets should be
documented with metadata that are rich and detailed enough for independent researchers to understand their exact
provenance. In the case of integration, the description of the samples, the experimental design and the methods behind
the data must allow any investigator to appreciate whether two datasets could be compared or merged together, and
under which conditions.

C. Data models

General metadata schema, such as schema.org (https://schema.org) or Dublin Core (https://dublincore.org)
provide a generic tool to describe datasets in a standard manner, yet fall short in describing the complex context of
experimental procedures behind most biomedical datasets. In biomedicine, domain-specific metadata schema such as
the Investigation Study Assay (ISA) model provides an appropriate framework to link “omics” data through a
database that describes their often intricate relationship of origin, measurement technology, sequencing runs, and
experimental conditions [17]. Besides metadata schema, standard notations, controlled vocabularies and ontologies
are essential to provide descriptions that can be searched and compared in an automated manner. Indeed, as the
amount of generated data grows, so does the need to automate the process of metadata searching and matching.

D. Driving forces

Public data repositories are instrumental in promoting good practices that facilitate data sharing and integration.
For instance, domain-specific databases such as the European Nucleotide Archive (ENA) enforces the use of metadata
models like ISA while generic repositories such as Zenodo promote more general-purpose standards like schema.org.
Publishers and funding bodies increasingly demand that datasets associated to publications and projects are shared
publicly on appropriate data sharing platforms. These strong driving forces in the research ecosystem facilitates the
construction of knowledge bases across datasets and studies to enable larger integrative studies. However, data
integration across independent “omics” studies remains challenging due to the inevitable differences and complexity
of the experimental procedures.

E. Reproducibility

Last but not least, documenting data processing is also critical to understand how processed data should be handled
and interpreted as well as if and how they could be integrated. Although documenting data processing code has been
facilitated by the now ubiquitous version control systems (e.g. Git), ensuring the actual reproducibility of data
processing workflows remains a technical challenge to most biomedical researchers today. Indeed, reproducing
workflows often demand, on top of the data processing code, specific sets of software dependencies (i.e. the
computing environment) as well as an understanding of the links between processing steps, data sources and results
(i.e. a knowledge graph of the workflow) [18]. This is typically addressed using virtualization technologies such as
Docker (https://www.docker.com [19]) and workflow orchestration systems like the Common Workflow Language
(CWL) [20]. Although building and using data processing systems that enable the full reproducibility of workflows
can be perceived as an unessential overhead in today’s context of competitive and time-pressured research, off-the-
shelves complete data science technology stacks like Renku (https://renkulab.io [21]) are emerging. This will reduce
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the barriers to the adoption of technologies that enable the reproducibility of data processing, and facilitate data
integration in the future.

VI. EXPLAINABLE ARTIFICIAL INTELLIGENCE

A. Machine learning unlocks integrative analysis

In biomedicine, machine learning (ML) is used or investigated in a variety of applications, from patient diagnosis
and prognosis to the design of new drugs and the prediction of their effects [1]. It is a tool of choice to identify and
use complex patterns across multi-modal data that are otherwise non-obvious to the human researcher and hard to
assess with more classic statistical tools. While predictive algorithms have so far dominated this scene, there is a
growing interest for methods including a strong explainability aspect. Indeed, in the context of aging research and
systems genetics, which study the links between biomolecular factors and health-related traits, predicting phenotypes
is typically of interest for disease-interception applications that require to anticipate the development of disorders in
healthy individuals and applying preventive interventions to delay this development and expand healthspan.
However, this is of little value for the identification of possible treatment targets, without an understanding of the key
factors that drive the prediction. Interpretable ML methods that can highlight key predictive features of phenotypes
that are relevant to diseases across multi-modal datasets are an emerging alternative to overcome the limitation of
pairwise associative methods. An early example of such approach has been used to predict tissue-specific protein
functions based on a network of protein-protein interactions built across a variety of tissues.

The interpretable nature of the ML algorithm could then have been used to highlight the specific features important
for the prediction of a function [22]. In the context of systems genetics, a similar method could be used to highlight,
in a network of “omics” observations constructed across tissues, features relevant for the prediction of a trait of
interest. A network could be based on gene co-expression, external knowledge bases such as publicly available
annotations regarding gene-protein encoding (e.g. Ensembl [23]), protein-protein interactions (e.g. IntAct, MINT,
MatrixDB [24]-[26]) and metabolic pathways (e.g. GO, KEGG [27]-[31]). Although building such networks across
heterogeneous, noisy and sparse datasets requires significant efforts, such eXplainable Artificial Intelligence (XAI)
framework could be a powerful tool to assist researchers in making discoveries.
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Fig. 2. A) Overview of “pairwise” associative studies in systems genetics. Genome Wide Association Studies (GWAS) and Quantitative Trait Locus (QTL)
analyses search for associations between a phenotype and genetic variants. Phenome Wide Association Studies (PheWAS) look for associations with a gene
variant within a collection of phenotypes or intermediate phenotypes. Expression Quantitative Trait Locus (eQTL) look for associations between an intermediate
phenotype and genetic variants. Expression-based PheWAS (ePheWAS) search for associations with an intermediate phenotype within a collection of phenotypes.
Transcriptome/Proteome-Wide Association Studies (T/PWAS) look for associations between a phenotype and variations in gene expression/protein levels.
Adapted from Li et al. 2018 [14]. B) Integrative approaches assessing multiple layers of biological data together may capture complex patterns relevant to
diseases, that could not be captured by “pairwise” associative approaches. Adapted from Li et al. 2018 [14] and Zitnik et al. 2019 [1]. C) The integration of
diverse observations allows to capture more complex patterns, yet demand larger sample sizes in order to conserve the accuracy and generalization of insights.
D) Vertical and horizontal data integration both require detailed and rich metadata. Metadata act as a glue that can link datasets across types of measurements
(e.g. transcript, proteins or metabolite levels) or across studies.

VII. USE-CASE — MULTI-OMICS INTEGRATION IN SYSTEMS GENETICS

A. The BXD family

In a unique use-case, we intend to assemble a large knowledge base from a collection of “omics” and phenotype
datasets collected on the BXD mouse genetic diversity panel and to use it to investigate integrative, exploratory
approaches [32]. These datasets include genetics as well as gene expression, protein, lipids and metabolite levels
measured across multiple tissues, as well as the composition of the gut microbiome and data from a large array of
phenotyping tests targeting metabolic activity (blood pressure, body fat and lean mass, cardiac activity, glucose
tolerance, etc.). This collection of datasets has been generated internally and its majority is publicly available on
domain-specific repositories. Some of these data have been previously associated to discoveries reported across peer-
reviewed publications [33]-[40]. These datasets are therefore well documented and our group has an excellent
understanding of its complications and limitations, which is critical to determine under which conditions they can be
integrated.

B. Building a knowledge base

Our first goal is to consolidate a knowledge base through an extraction, transformation and load (ETL) process in
order to standardize data and metadata notations across datasets and link measurements across strains, tissues,
experimental conditions and assays technologies (i.e. vertical integration). The use of domain-specific ontologies and
standards, such as the Mammalian Phenotype ontology (MP) (http://purl.obolibrary.org/obo/mp.owl), the Vertebrate
Trait ontology (VT) (http://purl.obolibrary.org/obo/vt), the Mouse Adult Gross Anatomy (MA)
(http://purl.obolibrary.org/obo/ma.owl) and the Ontology of Biomedical Investigations (OBI)
(http://purl.obolibrary.org/obo/obi [41]) will also facilitate future integration with independent studies carried out
internally or by other research groups (i.e. horizontal integration).
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C. Machine learning on graphs

This knowledge base will be used as a test bed for the development of integrative data analysis approaches based
on ML. This will primarily focus on approaches based on graphs, as these are tools of choice to describe
heterogeneous biological observations together with their links (such as interactions between proteins, mechanistic
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Fig. 1. Integrative systems genetics approach based on graphs. Biological
data layers including diverse types of observations (e.g. genetic variations,
gene transcription, phenotypes or microbiome composition) across multiple
tissues (e.g. liver, kidney, heart) are integrated into a graph. Graph features
that are key to predict a trait that is relevant for a disease (e.g. the body mass)
are extracted using the interpretability of a graph-based ML algorithm.

links between genes, transcripts and proteins and metabolic pathways). In particular, we envision novel applications
for graph Convolutional Neural Networks (CNN) [42]-[45]: Traits relevant to diseases could be predicted based on
a network of connected “omics” observations across tissues. The inherent interpretability of graph convolutional
neural networks could then highlight key predictive features of this network, which would help discovering complex
biological mechanisms and potential therapeutic targets (Fig. 3).

vill. CONCLUSION

There is a critical need to develop new strategies for preventing, delaying or reversing the course of age-related
diseases in the growing and aging global population. Age-related diseases have complex multi-factorial roots which
demand to take individual physiological characteristics into consideration both for research and treatment.
Understanding the metabolic mechanisms underlying the aging process helps developing interventions to compensate
its effects. In particular, integrative approaches that combine biological observations across multiple tissues promise
to generate valuable insights into these complex biomolecular mechanisms. Although “omics” technologies and the
use of model organisms enable the detailed investigation of tissues and cells physiology, identifying complex patterns
and regulatory systems across tissues and biomolecular layers remains challenging. Indeed, it requires integrative
approaches that can combine a large amount - and a diversity - of “omics” observations across multiple tissues and
varying conditions. Integrative analyses need to combine multiple datasets of different types (i.e. genomic, proteomic,
metabolomic) that could be generated within a same, or within multiple independent studies. Such integration requires
a deep understanding of each dataset’s characteristics and specificities. This demands rich, detailed and harmonized
documentation and metadata. Although promoted by increasingly adopted open science standards, the necessary level
of details is rarely accessible for publicly available datasets and such approach therefore remain marginal in
biomedicine.

In order to provide a first use-case in the field of systems genetics, we are assembling a large knowledge base of
heterogeneous “omics” datasets derived from the BXD mouse genetic diversity panel. This will enable to test the
application of XAl methods for assisting researchers in the discovery of complex biological mechanisms relevant for
age-related diseases. This study will allow to investigate the links between genetics, metabolism, tissues and
phenotypes. It may enable the identification of novel therapeutic targets against complex disorders and set the ground
for further integrative approaches in biomedicine.
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GLOSSARY

BXD mouse genetic diversity panel: A set of ~200 strains of recombinant inbred mice derived from
C57BL/6 and DBA/2 parents. Thanks to patterns of genetic recombinations that are unique to each inbred
strain, this family of mice allows to resolve the effect of 6 million DNA variants on heritable traits.

FAIR principles: Data management guidelines formulated in the 2016 paper “The FAIR Guiding Principles
for scientific data management and stewardship” by Wilkinson et al. aiming at promoting Findability,
Accessibility, Interoperability, and Reuse of digital objects. The FAIR principles constitute a key stone in
open science as they clearly identify the essential elements needed for data reuse by the community.

Healthspan: The period of life in which a person is in healthy condition.

Explainable Artificial Intelligence (XAl) and interpretable machine learning (ML): ML approaches
focusing on models which underlying logic can be understood by the user. Explainable ML models are seen
as white boxes. In contrast, models which logic cannot be understood by the user because it is based on too
high levels of abstraction are considered black boxes.

Knowledge base: In this text, the term “knowledge base” is used in its most general sense to describe any
form of organized information around a dataset, indistinctively of its form or complexity (i.e. whether as a
simple text table or as a complex relational or graph database). This includes metadata, metadata description
and possible links within and between these elements.

Precision medicine: An approach to medicine that takes patient individual characteristics into account for
the design of personalized treatments. While this concept is not new and has been applied in the past (e.g.
blood transfusion needs to be adapted to patient’s blood type), the terms “precision medicine”
(interchangeable with the term “personalized medicine”) refer to emerging approaches that account for
complex characteristics, or combinations of them, found in genetics, life-style and a patient’s environment.

Systems genetics: A research approach to understand complex traits. Systems genetics investigates the links
between genetics variations, intermediate molecular phenotypes (i.e. gene expression, metabolites levels,
etc.) and traits.
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