The RB596 antibody recognizes the spike S protein from SARS-CoV-2 by ELISA

Philippe Hammel¹, Kelvin Lau², Florence Pojer², David Hacker², Anna Marchetti¹

¹ Geneva Antibody Facility, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva, Switzerland ² Protein Production and Structure Core Facility, EPFL, SV, Station 19, CH-1015, Lausanne, Switzerland

Abstract

The recombinant antibody RB596 detects by ELISA the spike S protein from SARS-CoV-2.

Introduction

The spike (S) glycoprotein mediates attachment of coronaviruses to the host ACE2 receptor (through the Receptor-Binding Domain [RBD] in the S1 subunit) and fusion with the host cell membrane (through the S2 subunit) (Yan *et al.*, 2020). Here we describe the ability of the recombinant antibody RB596 to detect by ELISA the soluble ectodomain of the S protein from SARS-CoV-2 (UniProt P0DTC2).

Materials & Methods

Antibodies: ABCD RB596 antibody (ABCD https://web.expasy.org/abcd/) nomenclature, was produced by the Geneva Antibody Facility (http://www.unige.ch/medecine/antibodies/) as a miniantibody with the antigen-binding VHH portion fused to a mouse IgG2A Fc. HEK293 suspension cells (growing in FreeStyle[™] 293 Expression Medium, Gibco #12338) were transiently transfected with the vector coding for the VHH-Fc. Supernatant (100 mg/L) was collected after 5 days.

Antigen: The antibody was raised against the ectodomain (residues 1-1208) of the SARS-CoV-2 S protein, with a KV->PP substitution at residues 986/987, a RRAR->GSAS substitution at residues 682-685, and C-terminal T4 fibritin trimerization motif, protease cleavage site, TwinStrepTag and 8xHisTag (PDB #6VSB; Wrapp *et al.*, 2020). As a negative control, an irrelevant protein (GOLPH3, Golgi phosphoprotein 3, UniProt Q9H4A6), also containing the TwinStrep and 8xHis tags, was used.

Protocol: Antigen proteins (10 µg/ml, 50 µl/well in PBS 0.5% (w/v) BSA, 0.1% (w/v) Tween20) were immobilized on streptavidin-coated ELISA plates (Pierce #15124) for 30 min. Each well was rinsed three times with 100 µl of washing buffer (PBS + 0.5% (w/v) BSA + 0.05% (w/v) Tween20), then incubated for 1 hour with 50 µl of RB596 supernatant diluted in washing buffer (Fig. 1). After rinsing 3 times (100 µl washing buffer), wells were incubated with horseradish peroxidase-coupled goat antimouse IgG (Bio-Rad #170-6516, dilution 1:1000, 50 µl per well) for 30 min. After 3 rinses, Tetramethylbenzidine (TMB) substrate (Sigma #T5569) was added (50 µl per well). The reaction was stopped by the addition of 25 µl of 2 M H₂SO₄. The absorbance (OD) was measured at 450 nm, and the absorbance at 570 nm was subtracted.

Results

The RB596 antibody bound in a concentration-dependent manner to the SARS-CoV-2 S protein, but not to an unrelated tagged protein (Fig. 1). This antibody has also been shown to recognize the full-length SARS-CoV-2 S protein by immunofluorescence (Marchetti *et al.*, 2020).

Fig. 1. Specific binding of RB596 to the SARS-CoV-2 S protein, but not to the negative control protein, as detected by ELISA.

References

Marchetti A, Hammel P, Zenhausern F. AI334, AQ806 and RB596 antibodies recognize the spike S protein from SARS-CoV-2 by immunofluorescence. Antib. Rep. 2020, 3:e219. doi:10.24450/journals/abrep.2020.e219

Wrapp D, Wang N, Corbett KS, *et al.* Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367:1260-1263. PMID:32075877

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367:1444-1448. PMID:32132184

Acknowledgments

We would like to thank Prof. Jason McLellan (University of Texas, Austin) for providing the Spike expressing construct; Prof. Giovanni D'Angelo for the GolPh3 expressing construct; and Laurence Durrer and Soraya Quinche (Protein Production and Structure Core Facility, EPFL) for the help with the mammalian cell culture.

Conflict of interest

The authors declare no conflict of interest.

