# ABCD\_RB881-RB886 antibodies recognize a human lipocalin2 peptide by ELISA

Jacopo Sgrignani\*, Sara Buscarini and Andrea Cavalli

Institute for Research in Biomedicine (IRB), Universita' della Svizzera Italiana (USI), Via Chiesa 5, 6500 Bellinzona, Switzerland \*Correspondence: <a href="mailto:jacopo.sgrignani@irb.usi.ch">jacopo.sgrignani@irb.usi.ch</a>

# **Abstract**

The recombinant antibodies ABCD\_RB881, ABCD\_RB882, ABCD\_RB883, ABCD\_RB884, ABCD\_RB885 and ABCD\_RB886 detect by ELISA a synthetic biotinylated peptide from the human lipocalin2 protein.

#### Introduction

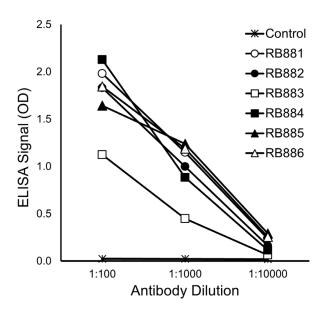
Lipocalin2 (LCN2/NGAL, UniProt #P80188) is a multifunctional protein member of the adipokine family that binds bacterial siderophores to sequester iron, playing a key role in innate immunity. LCN2 interacts with its receptor (NGALR) to regulate inflammation and has been linked to neurodegenerative diseases through its stabilization of MMP-9, a matrix metalloproteinase involved in blood-brain barrier integrity (Chandrasekaran *et al.*, 2024). LCN2 is also used as a biomarker of kidney injury and dysfunction (Devarajan, 2010).

Here we describe the ability of six recombinant antibodies (ABCD\_RB881-RB886) to detect by ELISA a synthetic biotinylated peptide from the human LCN2 protein.

### **Materials & Methods**

**Antibodies:** ABCD RB881, ABCD RB882, ABCD RB883, ABCD RB884, ABCD RB885 and ABCD RB886 antibodies (ABCD nomenclature, http://web.expasy.org/abcd/, referred to collectively as RB881-886) were discovered by the Geneva Antibody Facility (http://unige.ch/medecine/antibodies). Briefly, a synthetic VHH phage display library (in-house) was panned against a LCN2 biotinylated peptide (see antigen section). After three rounds of panning, selected phage vectors were isolated using a plasmid preparation kit (Qiagen), and the VHH inserts were subcloned into custom-made expression vectors and sequenced. The selected antibodies were produced as mini-antibodies with the antigen-binding VHH portion fused to a human IgG1 Fc. HEK293 suspension cells (growing in HEK TF medium, Xell #861-0001, Sartorius, supplemented with 0.1% Pluronic F68, Sigma #P1300) were transiently transfected with the vector coding for the VHH-Fc of each antibody. Supernatants (40-130 mg/L) were collected after 5 days.

**Antigen:** The antibodies were raised against a N-biotinylated synthetic peptide corresponding to amino acid


110 to 128 of the human LCN2 protein sequence (GEFTLGNIKSYPGLTSYLV). The same peptide was used in the ELISA assay. As a negative control, an irrelevant N-biotinylated peptide (AEFSMDDFEDTFDS NATISTKDLFEGSDRLPLNQSINTTIQNL) from Dictyostelium discoideum stat5 protein (UniProt #O00910) was used.

**Protocol:** The whole procedure was carried out at room Biotinylated peptides at concentration (10 pmol/well) were immobilized on streptavidin-coated ELISA plates (Pierce #15124) for 30 min. Each well was rinsed three times with 100 µl of washing buffer (PBS + 0.5% (w/v) BSA + 0.05% (w/v) Tween20), then incubated for 1 hour with 50 µl of RB antibody-containing supernatant diluted in washing buffer (Fig. 1). After rinsing 3 times (100 µl washing buffer), wells were incubated with horseradish peroxidase-coupled goat anti-human IgG (BioRad #1721050, dilution 1:1000, 50 μl per well) for 30 min. After 3 rinses, Tetramethylbenzidine (TMB) substrate (Sigma #T5569) was added (50 µl per well). The reaction was stopped by the addition of 25 µl of 2 M H<sub>2</sub>SO<sub>4</sub>. The absorbance (OD) was measured at 450 nm, and the absorbance at 570 nm was subtracted.

#### **Results and Conclusion**

The ability of the six recombinant antibodies RB881–886 to bind the human LCN2 peptide was evaluated by ELISA. An irrelevant peptide from *D. discoideum* was used as a negative control. As shown in figure 1, antibodies RB881-886 bound in a concentration-dependent manner to the LCN2 peptide against which they were raised, but not to the negative control peptide (Fig. 1). Antibody RB883, produced at a relatively high concentration (100 mg/L), displayed a weaker binding signal in the ELISA assay, suggesting a lower apparent affinity for the target peptide compared with the other antibodies. Although these antibodies recognize specifically the LCN2 peptide by ELISA, their ability to bind the full-length protein should be determined in future experiments.





**Fig. 1.** Specific binding of the tested antibodies to the target LCN2 peptide, as detected by ELISA. 'Control' indicates the binding of RB881 to the negative control peptide from *D. discoideum* stat5 protein (all other control curves were superimposed).

#### References

Chandrasekaran, P., Weiskirchen, S., & Weiskirchen, R. (2024). Structure, Functions, and Implications of Selected Lipocalins in Human Disease. *International journal of molecular sciences*, 25(8), 4290. https://doi.org/10.3390/ijms2508429

Devarajan P. (2010). Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury. *Biomarkers in medicine*, 4(2), 265–280. https://doi.org/10.2217/bmm.10.12

# **Conflict of interest**

The authors declare no conflict of interest.

# **Data Availability Statement**

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

