# Camelid single-domain antibody ciA-B5(ABCD\_AW306) recognizes light chain of botulinum neurotoxin type A by ELISA

Nga Quynh Pham<sup>1</sup>, Tam Trang Mai<sup>2</sup>, Tran Bao Anh Dang<sup>2</sup>, Anh Minh Nguyen<sup>1</sup>, Anh Thao Nguyen<sup>1</sup>, Anh Phuong Tran<sup>1</sup>, Tran Nhat Minh Dang<sup>3</sup>, Hai Anh Tran<sup>3</sup>, Van Khanh Tran<sup>3</sup>, Hoa Quang Le<sup>1</sup>

<sup>1</sup>School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1st Dai Co Viet, Hanoi, Vietnam.

<sup>2</sup>High School for the Gifted in Natural Sciences, University of Natural Sciences, Vietnam National University, Luong The Vinh Street, Hanoi, 120558, Vietnam.

<sup>3</sup>Hanoi Medical University, 1st Ton That Tung Street, Hanoi, 11521, Vietnam. Correspondence: hoa.lequang@hust.edu.vn

#### **Abstract**

Camelid single-domain antibody (VHH) ciA-B5 (ABCD\_AW306) detects by ELISA the light chain (LC) of the botulinum neurotoxin type A (BoNT/A).

### Introduction

Botulinum neurotoxin type A (BoNT/A, UniProt #P0DPI1) poses a great threat to humans due to its most potent toxicity with the longest duration of paralysis. BoNT/A consists of a heavy chain (HC) encompassing the receptor binding domain (H<sub>C</sub>) and the translocation domain (H<sub>N</sub>), and a light chain (LC) which is a zinc-dependent endopeptidase, capable of specific cleavage on neuronal SNARE proteins. Previous research has showed that VHH ciA-B5 can bind to the H<sub>N</sub> domain of the heavy chain of BoNT/A and has demonstrated its ability to neutralize BoNT/A in a mouse model (Mukherjee *et al.*, 2012; Lam *et al.*, 2020). In the present study, we describe the reactivity in ELISA of this VHH against LC of BoNT/A.

## **Materials & Methods**

Antibodies: The gene coding for *ciA-B5* (ABCD\_AW306, ABCD nomenclature, <a href="http://www.expasy.org/abcd">http://www.expasy.org/abcd</a>) was codon-optimized for expression in *E. coli*, synthesized by Genscript, and cloned into pET22b (Novagen #69744-3) expression vector, which was modified to carry a FLAG tag (DYKDDDDK) at the C-terminal end for detection. His-tagged recombinant VHH was expressed in *E. coli* BL21(DE3) and purified by Ni-NTA spin columns (Qiagen #31014) following the manufacturer's instructions.

Antigen: The *bont/LCA1* fragment (residues 1 - 420 of BoNT/A1) was cloned into pET45b vector with an N-terminal His-tag (Novagen #71327-3). LC/A1 was expressed in *E. coli* Rosetta<sup>™</sup> 2(DE3) and purified using Ni-NTA spin columns (Qiagen #31014), following the manufacturer's instructions. H<sub>C</sub>/A1 fragment or receptor-binding domain of BoNT/A1 (residue 871-1296 of BoNT/A1) was produced the same way and used as a negative control.

**Protocol:** High Bind Stripwell<sup>TM</sup> Microplates (Corning #07-200-24) were coated with 2 μg/mL recombinant antigens (LC/A1 and H<sub>C</sub>/A1) in Phosphate Buffer Saline (PBS 1X) at 4°C overnight. Each well was rinsed twice with 300 µl of washing buffer (PBS 1X supplemented with 0.05% (w/v) Tween-20), then blocked for 1 hour with 300 μl of PBS 1X supplemented with 1% (w/v) BSA. After washing, wells were incubated for 2 hours at 37°C with 100 μl of the recombinant VHH diluted in PBS 1X with 0.5% (w/v) BSA. The wells were washed three times with washing buffer, then incubated with anti-DYKDDDDK (FLAG) Antibody Rabbit - HRP Conjugate (Immunology Consultants Lab #RFLG-45P) (dilution 1:10000) for 1 hour at 37°C. After six washes, Tetramethylbenzidine (TMB) substrate (Sigma #T5569) was added (100 µl per well). Reactions were stopped by adding 100 µl of 1 M HCl to each well. The experiment was run in triplicate, the optical density of each sample was analyzed at 450 nm with a reference reading at 630 nm. EC<sub>50</sub> values (the halfmaximal effective concentration) were calculated via nonlinear regression analysis using GraphPad Prism.

# Results & Discussion

VHH ciA-B5 bound in a concentration-dependent manner to LC/A1 but did not bind to the H<sub>C</sub>/A1 negative control (Fig.1). From the ELISA dose-response curve, EC<sub>50</sub> value was calculated to be approximately 67.3 nM. Of note, ciA-B5 displayed moderate affinity toward LC/A1 comparing to a panel of VHHs (produced in our laboratory) consisting of JPU-A5, JPU-C10 and JPU-D12 from Lam *et al.* (2020) and A1, A16 from Conway *et al.* (2010) (data not shown) (Conway *et al.*, 2010; Lam *et al.*, 2022).

In a previous study, ciA-B5 was reported to bind to the  $H_N$  region of BoNT/A1 (Lam *et al.*, 2020). This conclusion was based on the crystallization of a hetero-tetrameric complex (LCH<sub>N</sub>/A-ciA-B5-ciAD-12-ciA-H7) including both LC and  $H_N$  of BoNT/A1, along with three VHHs (ciA-H7, ciA-D12, ciA-B5), in which ciA-H7 interacts with residues in the long helix  $\alpha$ 5 (Loop120, 170, and 250), and  $\alpha$ 10 of LC/A1; ciA-D12 interacts with residues in the C-terminal loop, the N-terminal loop, and  $\alpha$ 10 of



LC/A1; and ciA-B5 interacts to residues 600–616 in  $H_{\rm N}$  domain of BoNT/A1. However, this report did not conclusively exclude the possibility that ciA-B5 can bind to the LC/A1. As both ciA-H7 and ciA-D12 interact with numerous regions of LC/A1, it is conceivable that interaction between ciA-B5 and LC/A1 could be obscured in the crystallographic analysis. In the present study, our results clearly demonstrated that ciA-B5 binds to LC/A1 in a concentration-dependent manner in ELISA assay. Therefore, we hypothesized that ciA-B5 can interact with both the LC and  $H_{\rm N}$  domains of BoNT/A1.

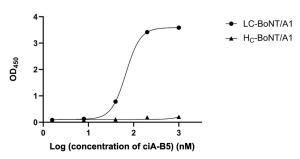



Fig. 1. ELISA dose-response curve of VHH ciA-B5 to LC-BoNT/A1 and  $H_{C}$ -BoNT/A1 as negative control.

#### References

Conway, J. O., Sherwood, L. J., Collazo, M. T., Garza, J. A., & Hayhurst, A. (2010). Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. *PLoS ONE*, *5*(1). https://doi.org/10.1371/journal.pone.0008818

Lam, K. H., Tremblay, J. M., Perry, K., Ichtchenko, K., Shoemaker, C. B., & Jin, R. (2022). Probing the structure and function of the protease domain of botulinum neurotoxins using single-domain antibodies. *PLoS Pathogens*, 18(1).

https://doi.org/10.1371/journal.ppat.1010169

Lam, K. ho, Tremblay, J. M., Vazquez-Cintron, E., Perry, K., Ondeck, C., Webb, R. P., McNutt, P. M., Shoemaker, C. B., & Jin, R. (2020). Structural Insights into Rational Design of Single-Domain Antibody-Based Antitoxins against Botulinum Neurotoxins. *Cell Reports*, *30*(8). https://doi.org/10.1016/j.celrep.2020.01.107

Mukherjee, J., Tremblay, J. M., Leysath, C. E., Ofori, K., Baldwin, K., Feng, X., Bedenice, D., Webb, R. P., Wright, P. M., Smith, L. A., Tzipori, S., & Shoemaker, C. B. (2012). A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. *PLoS ONE*, *7*(1). https://doi.org/10.1371/journal.pone.0029941

## Acknowledgements

Research reported in this publication was supported by Hanoi University of Science and Technology [Grant number: T2022-TĐ-002]

## **Conflict of interest**

The authors declare no conflict of interest.

# **Data Availability Statement**

The data that support the findings of this study are available from the corresponding author upon reasonable request.

